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Origin of the hydrodynamic Lyapunov modes

Sean McNamara and Michel Mareschal
Centre Europe´en de Calcul Atomique et Mole´culaire, Ecole Normale Supe´rieure de Lyon, 46 alle´e d’Italie,

69364 Lyon Cedex 07, France
~Received 5 April 2001; published 16 October 2001!

Recent studies of the Lyapunov spectrum of the hard sphere fluid reveal that there are ‘‘hydrodynamic’’
Lyapunov exponents corresponding to collective perturbations in phase space. We show that these collective
perturbations are due to the conservation of certain quantities during collisions. These new conservation laws
generate new hydrodynamic fields, just as the conservation of mass, momentum, and energy generate the
density, velocity, and temperature fields. We then construct a detailed theory of the new hydrodynamic fields
using a kinetic theory approach. This theory predicts several properties of the modes, but not all of them. This
suggests that the underlying idea is correct, but a detailed theory must be elaborated in another way. The
hydrodynamic exponents are not related in a simple way to the transport coefficients.
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I. INTRODUCTION

It is now possible to study deterministic chaos in syste
with many @O(103)# degrees of freedom. Much work ha
been done on the Lyapunov spectrum of these syste
These studies have resulted in a clearer understanding o
origin of irreversible, macroscopic behavior in systems w
reversible microscopic dynamics. They have also establis
connections between the transport coefficients and
Lyapunov spectrum@1–6#.

One example of this kind of study is the calculation of t
Lyapunov spectrum of the hard sphere fluid@1–3#. One of
the principal discoveries is the existence of ‘‘hydrodynami
exponents, which correspond to collective, ‘‘hydrodynami
perturbations in phase space@2#. These modes, which w
will call ‘‘hydrodynamic Lyapunov modes,’’ are intriguing
because they may be related to hydrodynamic fluctuation
a simple way. If it were possible to extract transport coe
cients directly from these exponents, it would illuminate t
relation between the reversible, microscopic dynamics
the irreversible macroscopic behavior of fluids. Two me
ods of relating transport coefficients to Lyapunov spec
already exist@6–8#, but they involve setting up nonequilib
rium simulations or locating special phase space trajecto
They do not consider the perturbations underlying the ex
nents. Even if the hydrodynamic Lyapunov modes have
connection to the hydrodynamic fluctuations, they are s
interesting because they are responsible for the discontin
structure of the Lyapunov spectrum near zero.

This paper is organized as follows: In Sec. II, we pres
a survey of the simulational results, emphasizing the hyd
dynamic exponents. Some of these results have been
sented elsewhere@1,2#, but they are included here for com
pleteness. The principal result is the existence of Lyapu
exponents associated with a hydrodynamic, collective per
bations. These exponents are proportional toL21, whereL is
the wavelength of the perturbation. In Sec. III we presen
theory of the hydrodynamic exponents. Our starting poin
the observation that certain quantities are conserved du
collisions, and these conserved quantities give rise to n
hydrodynamic fields. The hydrodynamic Lyapunov mod
1063-651X/2001/64~5!/051103~14!/$20.00 64 0511
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are the long wavelength fluctuations of these fields. We
tempt to extract detailed predictions from this theory usin
kinetic theory approach. The theory has a number of s
cesses, indicating that the underlying approach is correct,
also a number of failures, suggesting that alternatives to
kinetic theory approach must be considered.

A. The hard sphere fluid

The hard sphere fluid was one of the first model fluids
be studied@9#. The collisions between the particles are a
sumed to be instantaneous, and to conserve energy and
mentum. If the forces between two colliding particles a
assumed to act only along the line connecting the partic
centers, the postcollisional velocitiesvA,B8 are given in terms
of the precollisional velocitiesvA,B by

vA85vA1f, vB85vB2f, f[~vB2vA!•n̂n̂, ~1!

where the subscriptsA and B label the colliding particles.
The unit vectorn̂ points from the center of particleA towards
the center of particleB. In this paper, we consider the two
dimensional hard sphere fluid composed ofN particles of
diameters in a doubly periodic domain of sizeLx3Ly .

B. Lyapunov spectrum

The Lyapunov exponents describe how quickly two ide
tical systems with almost identical initial conditions diverg
in phase space. Consider a system at the pointG(0) in phase
space ofL dimensions. The system follows some trajecto
through phase space, arriving atG(t) at time t. We express
this mathematically by definingSt to be an operator tha
evolves a point in phase space forward a timet:

G~ t !5StG~0!. ~2!

Next, consider a second system atG1dG, wheredG is in-
finitesimally small. After a timet, this system moves to

G~ t !1dG~ t !5St@G~0!1dG~0!#. ~3!
©2001 The American Physical Society03-1
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SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 64 051103
Then the Lyapunov exponentl is defined to be

l5 lim
t→`

1

t
ln

udG~ t !u
udG~0!u

. ~4!

Note thatl has units of inverse time. It is thus the growth~or
decay! rate of the perturbationdG. In generall is a function
of both G and dG. This is unfortunate, because bothG and
dG contain L numbers, so thatl is a function on a
2L-dimensional space. However, the situation can be
proved because thedG are infinitesimal. This means tha
their evolution depends only on the linearized dynamics:

G~ t !1dG~ t !5StG~0!1M•dG, ~5!

where M is simply anL3L matrix. SinceM is a linear
operator, knowingl(G,dG) for a set ofdG that spans the
phase space enables one to calculatel(G,dG) for any dG.
By convention, we associatel1 with the fastest growing di-
rection dG1 ; l2 with the fastest growing directiondG2
which is also perpendicular todG1 (dG1•dG250), andl i
with the fastest growing directiondGi with dGj•dGi50 for
j , i . The vectors$dGi% are often called the ‘‘Lyapunov vec
tors.’’

Furthermore, for ergodic systems, the Lyapunov spect
$l i% is independent ofG. This enables us to do away with th
dependence onG, and speak about the Lyapunov spectru
of a system. A dynamical system is ergodic if its invaria
distribution cannot be subdivided into smaller invaria
pieces. This is a more general condition than equilibriu
systems out of equilibrium can also be ergodic, but all eq
librium systems, including the one studied in this paper,
ergodic.

C. Algorithm

The algorithm for calculating the exponents is the same
used by Dellago, Posch, and Hoover@1#, which is a gener-
alization of Benettin’s algorithm for continuous-time sy
tems@10,11#. A set of 2N ~or 4N) vectors$dGi% is evolved
forward in time with Gram-Schmidt orthonormalization b
ing periodically applied to$dGi%. This is necessary becaus
the vectors grow rapidly, and are attracted towardsdG1. The
Lyapunov exponents are computed from the growth rate
the vectors.

All the results presented in this paper are numerical,
thus presented in dimensionless units. The particle ra
defines the unit of distance and the particle mass defines
unit of mass. The unit of time is fixed by setting the avera
squared velocity of the particles to 1. The diameter of
disks is therefores52, and the temperature of the gas isT
51/2 ~with Boltzmann’s constantkB51). We express den
sity using the ‘‘area fraction’’n5Nps2/(4LxLy), the frac-
tion of the space covered by the disks. The maximum p
sible value ofn is p/(2A3)'0.9069, corresponding to
hexagonal array of disks in contact.
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II. A SURVEY OF THE LYAPUNOV SPECTRA
OF THE HARD DISK FLUID

A. System-size dependence

The Lyapunov spectrum has a special symmetry: e
exponent has a partner that is exactly its negative. This is
‘‘conjugate pairing rule.’’ @1# Therefore, it is necessary t
calculate only half the spectrum. The second half contains
additional information, and is simply the negative of the fir

In Fig. 1, we show half of a typical spectrum of the ha
sphere fluid at equilibrium. The parameters of the system
N5360, Lx5Ly545. The spectrum can be divided into tw
parts. Fori<681, the exponents fall onto a well defined co
tinuous curve. On the other hand, for 682< i<720, the ex-
ponents appear in small groups at discrete values. The
crete part of the spectrum corresponds to hydrodynamic
collective perturbations, as we will show later in this sectio

If the number of particles increases with density kept co
stant, the continuous part of the spectrum remains appr
mately the same, except that the exponents become m
dense. The largest exponentl1 increases very slowly. The
value of the smallest exponent in the continuous part rem
constant. The discrete part of the spectrum also changes

FIG. 1. The spectrum of aN5360 hard disk fluid in a square
domain (Lx5Ly545522.5s). ~a! The first 2N Lyapunov expo-
nents~the second 2N are just the negative of the exponents show!.
~b! The smallest positive exponents~note difference in thex axis!.
3-2
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ORIGIN OF THE HYDRODYNAMIC LYAPUNOV MODES PHYSICAL REVIEW E64 051103
these changes depend also on the aspect ratio of the sim
tional domain. If we consider only square domains (Lx

5Ly), increasing the number of particles causes each gr
of exponents to approach zero while remaining distinct fr
all the other groups. The number of exponents in each gr
does not change, but new groups of exponents separate
the continuous part of the spectrum. On the other hand, if
number of particles is decreased, the groups of expon
move away from zero and merge one by one with the c
tinuous part of the spectrum. Small systems exhibit only
continuous part of the spectrum.

If one reducesLx while keepingLy constant, another be
havior appears. Some groups of exponents increase aLx

decreases, and finally merge with the continuum. Ot
groups split in two parts, one of which remains independ
of Lx while the other part rejoins the continuum. This pr
cess is shown in Fig. 2. We see that a long narrow sys
has a much simpler structure than the square system. We
therefore concentrate on the spectrum at the extreme le
Fig. 2, where only the discrete exponents independent oLx

remain. This spectrum is shown in Fig. 3.

B. General properties of the Lyapunov vectors

Now we are ready to inspect thedGi . Recall that a given
particle is associated with four components of eachdGi .
Two components give the displacement of that particle
configuration space, and the other two give its displacem
in momentum space. We denote the displacement in confi
ration space of particlej as dr j

( i ) and its momentum spac
displacement asdv j

( i ) . ~In the following, we always usei to
denote the Lyapunov index, andj to indicate a particle.!

Armed with this notation, we can now discuss t
Lyapunov vectorsdGi . First, we consider the correlatio
betweendr j

( i ) anddv j
( i ) . We calculate

FIG. 2. The transition of the spectrum from a square (Lx5Ly

545) to rectangular (Lx515,Ly545) system. The number of par
ticles is adjusted to keep the density equal in all simulations.
spectrum in Fig. 1 appears as a single column atLx545; for each
exponent, a dot is placed on the graph. Since all those expon
haveLx545, they form a single column. The spectra for the oth
values ofLx are displayed in the same way.
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j

dr j•dv j

F S (
j

dr j
2D S (

j
dv j

2D G1/25
dGx•dGv

udGxuudGvu
. ~6!

We have divided the 4N-dimensional vectordGi into two
parts dGx and dGv . dGx contains the configuration spac
displacementsdr j

( i ) , and dGv the velocity-space displace
mentsdv j

( i ) . dGx and dGv are both 2N component vectors
and we can consider them existing in the sa
2N-dimensional space, with the angle between them be
uxv . In Fig. 4, we see that this angle is always small~i.e.,
cosuxv;1! when i ,2N. This is especially true wheni is
close to 2N. Therefore, when investigating thedG, it suffices
to examine the configuration space displacement com
nents, because the velocity displacements are similar.
similarity between the velocity and position displaceme
was noted by the first paper that studied Lyapunov expon
numerically@4#.

A Lyapunov vector is closely related to its conjugat
Consider an exponentl and its vectordG. As stated at the
beginning of this section, each exponent has a ‘‘conjuga
partnerl* with a vectordG* such thatl* 52l. This con-

e

nts
r

FIG. 3. The same as Fig. 1, but for anN5120 hard disk fluid in
a rectangular domain (Lx515,Ly545). The density is the same a
in Fig. 1, butLx is reduced by 1/3. The stars mark the expone
featured in Fig. 5.
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SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 64 051103
jugate pairing rule holds for all Hamiltonian systems, a
follows from time reversibility: if two trajectories separa
exponentially in time, reversing the direction of time,~and
thus the direction of the trajectories!, will cause them to ap-
proach one another exponentially. We find thatdG is related
to dG* by

dGx* 5dGv , dGv* 52dGx . ~7!

Note that the position and velocity coordinates excha
places. This relation is observed very accurately~to more
than eight decimal places for some pairs!. But this accuracy
is very sensitive to the presence of other exponents. W
two exponents are close together, Eq.~7! is much less accu
rate, or even false, probably because the vectors of the
exponents can be mixed together.

Note that Eq.~7! shows that the simple explanation of th
conjugate pairing rule given above is not true. If revers
time simply reversed the direction of the trajectories, Eq.~7!
would be dGx* 5dGx , and dGv* 52dGv , i.e., the position
displacements would be unchanged and the velocity
placements reversed. Reversing the direction of time d
not change the central trajectoryG(t); it is simply traced
backwards in time. But the ‘‘satellite’’ trajectoriesG(t)
1dGi(t) do change; they are not simply reversed.

C. Characterization of the Lyapunov vectors

Turning our attention to individual exponents, we c
readily discern the physical meanings of the six zero ex
nents.

The ‘‘position displacement’’ exponents: these two ze
exponents havedr j5A, whereA is a constant vector, inde
pendent ofj. This perturbation consists of displacing all th
particles equally in the direction ofA. The sequence of col
lisions is not changed; the location of each collision
merely translated in space. These two exponents are a

FIG. 4. The angle betweendGx anddGv ~see text! for the spec-
trum shown in Fig. 3 (N5120,Lx515, Ly545). For i ,2N, dGx

anddGv are always nearly parallel, especially fori near 2N. When
i .2N, dGx and dGv are always nearly antiparallel~not shown!.
Note the curious behavior of the largest exponent (i 51), which is
detached from the other exponents. As density is decreased
always observe that cosuxv.0.8, except the for largest,i 51, expo-
nent.
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sequence of the translational invariance of the laws gove
ing the motion of the particles. There are two expone
because there are two independent directions available.

The ‘‘velocity displacement’’ exponents: these two ze
exponents havedv j5A, whereA is again a constant vector
independent ofj. This perturbation corresponds to changi
the velocity of the center of mass without changing the re
tive velocity of any of the particles. Again, the sequence
collisions does not change. These exponents express
ilean invariance.

The ‘‘time displacement’’ exponent: this exponent h
dr j5av j , wherev j is the velocity of particlej and a is a
scalar. This perturbation corresponds to perturbing the s
tem in the direction of its trajectory in phase space. T
collisions in the perturbed system will occur slightly earli
~or later, depending on the sign ofa) than in the unperturbed
system. This exponent expresses time translational inv
ance.

The ‘‘energy displacement’’ exponent: this last expone
hasdv j5av j , and corresponds to multiplying the velocit
of each particle by a factor. The perturbed and unpertur
systems both have the same sequence of collisions, but
has a higher collision frequency than the other. The two s
tems separate in phase space, but only linearly.
Lyapunov exponent, which measures exponential separa
is still zero. This exponent is a consequence of the linea
of the collision rule, Eq.~1!, in v.

We now investigate the nonzero exponents by project
thedr j onto the positions of the corresponding particles. T
is done in Fig. 5, where we show four typical vectors, o
from the continuous part of the spectrum, and the rest fr
the discrete part.

The continuous part of the spectrum@represented bydG1
in Fig. 5~a!# corresponds to disorganized and local pertur
tions. Many particles have very small contributions todG1.
As the Lyapunov indexi increases, the modes become le
local: more and more particles have significant amplitud
However, the modes remain disorganized. These modes
also very time dependent. If the simulation were to run a
longer or a bit shorter, the set of contributing particles wou
change, and Fig. 5~a! would look completely different. On
the other hand, if the calculation were started with a differ
initial dG1 ~but the same initial particle velocities and pos
tions, i.e., the same initialG) and run for the same length o
time, Fig. 5~a! would not change at all.

In the discrete part of the spectrum, the exponents co
spond to collective motions of the particles. This expla
why these exponents appear in small separated group
discrete values. For example,l2365l237 ~in the limit of an
average over an infinitely long time! because both exponen
correspond to transverse, sinusoidal shearing perturbat
@dG237 is shown in Fig. 5~d!, anddG236 is the same, but with
a phase shift ofp/2#. Higher harmonics of the shear wave
also exist. The pair of exponentsl231 andl230 correspond to
transverse shear waves with a wavelength ofLy/2. Note also
thatl2305l231'2l237. As Ly is increased further, it is pos
sible to see the third harmonic, then the fourth, and so o

The exponentsl232 throughl235 corresponds to longitu-
dinal waves, where compressive motion is coupled to a h

we
3-4
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FIG. 5. Lyapunov vectors corresponding tol1 , l233, l237, and l239 of the hard disk fluid whose spectra is shown in Fig. 3 (N
5120, Lx515, andLy545). The circles show the positions of the particles at the end of the simulation. In panels~a!, ~b!, ~d!, and~e!, the
arrows showdr j

( i ) , the components ofdGi that describe the configuration space displacement of particlej. ~The velocity space displacemen
are nearly equivalent.! The lengths of the vectors are scaled by the maximum length. If the length of a vector is less than 0.16, no v
shown. In panel~c!, we shade the particles withdr j•v j.0.
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ing or cooling of the gas.~In Fig. 5, we show position per
turbations dr j not velocity perturbationsdv j , but for
nonzero vectors, these two quantities are closely correla!
These waves resemble sound waves, but they do not hav
same relation between velocity and position displaceme
In true sound waves, the velocity and position displaceme
are out of phase, but in the longitudinal Lyapunov waves,
two displacements have the same phase. Furthermore,
waves do not propagate at the sound speed, but they do
higher harmonics just as the shear waves. Nevertheless
will refer to these Lyapunov modes as ‘‘sound modes.’’

For long, rectangular systems, the Lyapunov exponent
the discrete part of the spectrum obey

l5
ncl

Ly
1

n2dl

Ly
2

1O~1/Ly
3!, n50,1, . . . , ~8!

wheren is the mode number.~The zero modes can be con
sidered then50 members of this series.! The upper limit on
n is fixed by the continuous part of the spectrum. When
exponent predicted by Eq.~8! falls in the continuous part o
the spectrum, it no longer exists as a discrete mode. The
term in Eq.~8! also appears in a mathematical model of t
Lyapunov exponents@12#, where the evolution of$dG% is
modeled by generating and applying random matrices o
form consistent with the physics. Note thatcl has dimen-
sions of velocity anddl of a diffusivity. These two quantities
depend on density and on whether one considers a soun
shearing mode.

The structure of the discrete part of the spectrum can
explained by Eq.~8!, together with the observation that ea
possible wavenumber vectork generates six exponents: tw
shearing modes and four sound modes. In narrow rectang
systems~as in Figs. 3 and 5!, kW is parallel to they axis: k
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5(2pn/Ly) ŷ. One could also takek5(2pn/Lx) x̂, but these
exponents are lost in the continuous part of the spectrum

Lx is increased, the exponents generated byk5(2pn/Lx) x̂
decrease, emerge from the continuum, and join those ge

ated byk5(2pn/Ly) ŷ when Lx5Ly . This process can be
seen in Fig. 2. It is also possible thatk be oriented diago-
nally. This complicates the spectrum of square systems.

But Eq. ~8! renders interpretation of the hydrodynam
Lyapunov modes difficult. The simplest idea is that the c
lective perturbations in phase space are equivalent to co
tive perturbations in velocity space, i.e., the shear wave
Fig. 5~d! is equivalent to imposing a infinitesimally sma
sinusoidal shearing perturbation on a fluid in equilibriu
The phase space perturbation would then decay at the s
rate as the hydrodynamic one, withl;1/L2. This would
establish a simple and direct link between the transport
efficients~such as the viscosity! and the Lyapunov spectrum
However, this interpretation is excluded by Eq.~8! because
l;1/L.

We have measuredcl anddl for a range of densities by
running a series of simulations with the same density
different Ly and then measuring the exponent of then51
waves. PlottinglLy against 1/Ly gives a straight line with
slopedl and interceptcl . In Fig. 6~a!, we show the values
of cl measured by this method.

In Fig. 6~b!, we showdl as a function of density. This
quantity is much more difficult to measure thancl , because
one must measure small changes inlLy asLy becomes large
andl becomes small. Small errors inl cause large errors in
dl . Also, for 0.25<n<0.35, the shear and sound modes a
quite close together, and they can mix with each other,
ther complicating the analysis. Nevertheless, certain tre
emerge from the data. The most evident is thatdl.0. The
3-5
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diffusivity does not represent a kind of damping th
counters theO(1/Ly) growth of the perturbation. At smal
densities,dl seems to diverge. Note thatcl tends to a con-
stant asn→0. Thus at very small densities and finite wav
lengths, the quadratic term in Eq.~8! may dominate. At large
densities, the two types of modes have very different val
of dl : the diffusivity of the sound modes may diverge wh
the dl of the shear modes approaches a constant.

III. A THEORY FOR THE HYDRODYNAMIC
LYAPUNOV MODES

In this section, we develop a theory of the ‘‘hydrod
namic’’ exponents. The theory explains why the growth ra
are proportional to 1/Ly , what the mechanism of the growt
is, and why two types of modes appear. Our theory para
the derivation of the usual hydrodynamic equations from
Boltzmann equations. First, we considerdr j anddv j as vec-
tor quantities carried by the particlej. We identify six func-
tions of dr and dv that are conserved during collision
These six quantities are associated with the six zero mo
discussed in Sec. II C, and give rise to six new hydro
namic fields. Next, we derive equations for each of these n

FIG. 6. The dependence ofcl anddl in Eq. ~8! as a function of
the area fractionn. The circles correspond to the shearing mode@an
example is shown in Fig. 5~d!#, and the stars correspond to th
soundlike modes@an example is shown in Figs. 5~b, c!#. At each
density, several simulations were done, permittingcl anddl to be
estimated using Eq.~8!.
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fields. When we consider linear, sinusoidal perturbations
these fields, two equations decouple from the other four.
two decoupled equations give rise to the shear waves w
the other four are the origin of the sound waves.

As with the usual hydrodynamic equations, the result
equations are not closed: they contain higher moments.
make a simple closure hypotheses: that the hydrodyna
fields contain all the information about the correlation b
tween the perturbationsdr anddv, and the velocityv. Using
this assumption, we are able to calculate the collisio
fluxes of the conserved quantities, and we find a nega
diffusion constant that explains the growth of the she
modes. The theory is unable to explain the growth of
sound modes, although it accurately predicts their frequen

A. The hydrodynamic fields

It is possible to show that during collisions, the perturb
tion in position,dr, follows the same transformation rule a
the velocities given in Eq.~1!,

drA85drA1fr , drB85drB2fr , fr[~drB2drA!•n̂n̂,
~9!

where the primes indicate postcollisional quantities. On
other hand, when one considers the velocity perturbat
two terms appear infc :

dvA85dvA1fv , dvB85dvB2fv ,

fv[~dvB2dvA!•n̂n̂1Vs21 secu~drB2drA!•ûû8,
~10!

whereV[uvA2vBu andu is the angle betweenvB2vA and
n̂. We define the unit vectort̂ such thatn̂• t̂50 and n̂3 t̂
51. ~Here, we define the cross product to be a scalar:a3b
[axby2aybx . If our two-dimensional space were embe
ded in three dimensions,a3b would be thez component of
the usual vector cross product.! We defineû to be a unit
vector perpendicular to the precollisional relative veloc
and û8 to be perpendicular to the postcollision
relative velocity, so that (vB2vA)3û5(vB82vA8 )3û8
5uvB2vAu5V. Figure 7 summarizes these definitions.

The first term offv in Eq. ~10! has the same form as offr
and f. But there is a second term that depends in a com
cated way on the geometry of the collision: This new term
very important, because it is responsible for the exponen
growth of the phase space perturbations. It becomes v
large whenu→p/2 or u→2p/2, i.e., when the collisions
are nearly tangential.

Using Eqs.~1!, ~9!, and ~10! one can show that certai
quantities are conserved during collisions:

drA81drB85drA1drB ,

dvA81dvB85dvA1dvB ,

vA8•drA81vB8•drB85vA•drA1vB•drB ,
3-6
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vA8•dvA81vB8•dvB85vA•dvA1vB•dvB . ~11!

These conserved quantities correspond to the six zero e
nents discussed in Sec. II C. The first conserved quantitydr
corresponds to the position displacement exponents. The
ond quantity,dv corresponds to the velocity displaceme
exponents. The dot productsv•dr and v•dv correspond to
the time and energy displacement exponents, respectiv
As we will see, the six conserved quantities in Eq.~11! are
microscopic quantities that underlie six new hydrodynam
fields. Recall that hydrodynamic modes exist in ordinary fl
ids because particle interactions conserve certain quant
For example, momentum cannot be created or destroye
collisions. Thus, a local concentration of momentum dec
slowly because the collisions cannot destroy momentum;
momentum must be transported by diffusion. In the sa
way, introducing a local concentration of any of the quan
ties in Eq.~11! will change slowly since none of these qua
tities can be destroyed by collisions. We would therefore l
to construct hydrodynamic equations for the coarse-grai
fields corresponding to the conserved quantities. Let us
fine the new hydrodynamic fieldsX, U, D, andE:

nX5^dr&, nU5^dv&, nD5^v•dr&, nE5^v•dv&.
~12!

Here, the angular brackets signify an average over the
ticles in a small area, andn is the number density. The usu
hydrodynamic fields would be written in this notation as

FIG. 7. The unit vectorsn̂, t̂, û, andû8 for two different colli-
sions. The wide white vector isvA2vB . The angleu is indicated

by the double arc betweenn̂ andvA2vB . In panel~a! u5220°,
and in panel~b! u575°.
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n5^1&, nu5^v&, nT5 1
2 ^~v2u!2&. ~13!

These definitions assume that all particles have the s
mass. When the particles have different masses, it beco
more convenient to use the mass densityr instead of the
number densityn.

There is one difference between Eq.~12! and Eq.~13!. In
Eq. ~13!, all the conserved quantities are conserved by b
the collisions and the free motion of the particles. This is n
so in Eq.~12! for X and D change during the free motio
whered ṙ 5dv. However, sincedv anddr are roughly par-
allel ~as shown in Fig. 4!, the free motion simply multiplies
X andD by a constant. Furthermore, this change ofdr during
the free motion of the particles will be taken into account
the next section.

We will analyze the hydrodynamic Lyapunov modes
sinusoidal perturbations of the new hydrodynamic fie
given in Eq.~12!. For example, the mode shown in Fig. 5~d!
is a perturbation ofX with a wavelength equal toLy . Figures
5~b! and 5~c!, show thatdG233 involves sinusoidal perturba
tions of bothX @Fig. 5~b!# and D @Fig. 5~c!#. We will next
use kinetic theory to construct equations governing the n
hydrodynamic fields. These equations will explain the a
pearance of two shear modes and four soundlike mode
each wavelength.

B. The hydrodynamic equations

We will derive equations for the new hydrodynamic fiel
from a generalized Boltzmann equation,

]f

]t
1v•“ rf1dv•“drf5C, ~14!

where the generalized distribution function

f5f~v,dr,dv,r,t ! ~15!

gives the density of particles with velocityv and carrying the
perturbationsdr anddv at positionr at time t. The general-
ized distribution functionf is related to the familiar velocity
distribution functionf of kinetic theory by

f ~v !5E E f ddr ddv5
n

2pT
e2v2/2T. ~16!

We have setf equal to the Maxwellian, because we are on
concerned with equilibrium systems in this paper. T
Lyapunov coordinates are coupled to the physical ones
ways that will be discussed below. The notation¹ rf in Eq.
~14! indicates the gradient off with respect tor and¹drf
indicates the gradient off with respect todr. The third term
on the left represents the streaming motion between c
sions whend ṙ5dv. The term on the right-hand side give
the change inf induced by collisions:
3-7
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C~q,r,t !5sE fA~r!fB~r!@d~qA82q!2d~qA2q!#V

3cosudqBdu. ~17!

To lighten the notation, we have usedq to indicate the coor-
dinatesv, dr, anddv, and the subscript onf to show which
particle it represents:

qi5~v i ,dr i ,dv i !,

dqi5dv i ddr i ddv i ,

f i~r!5f~qi ,r,t !. ~18!

C is an integral over all possible collisions. The collidin
particles and their coordinates are labeledA andB, as in Fig.
7. The delta functions select certain collisions. The first de
function selects those collisions where the postcollisional
ordinates ofA are equal toq. The second delta function
selects collisions where the precollisional coordinates oA
are q. These two delta functions generate the gain and
terms of the collision operator. FinallyV cosu gives the fre-
quency of collision. As in Fig. 7,V5uvA2vBu andu is the
angle betweenvA2vB and n̂. For a collision to be possible
2p/2<u<p/2. The unit vectorn̂ is shown in Fig. 7; it
always points towards particleB.

We will not solve the Eq.~14! for f but rather use it to
derive equations for the new hydrodynamic fields. Letc be
any of the quantities in the angular brackets in Eq.~12! or
Eq. ~13!. Multiply the Boltzmann equation~14! by c and
integrate overq. The result is

]^c&
]t

1“•^vc&1^cdv•“drf&5^cC&. ~19!

The first term on the left-hand side is the time rate of cha
of n times one of the hydrodynamic fields. The second te
gives the streaming transport ofc. The third term vanishes
unlessc depends ondr. This term reflects the amplificatio
of dr by dv during the free motion. The right-hand side
the collisional change ofc. This last term can be simplified
to

^cC&5
s

2E @cA81cB82cA2cB#fA~r!fB~r!V

3cosudqAdqBdu, ~20!

wherec i5c(qi), and the definitions of Eq.~18! have been
used again. Now, the significance of Eq.~11! becomes clear
When c is any of the conserved quantities,^cC& vanishes.
Settingc equal to each of the conserved quantities, Eq.~19!
generates the following equations:

]X

]t
1“•^vdr&5U,

]U

]t
1“•^vdv&50,
05110
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]D

]t
1“•^v~v•dr!&5E,

]E

]t
1“•^v~v•dv !&50. ~21!

The quantities in angular brackets are the streaming flu
They give the transport of the concerned quantity by the f
motion of the particles. To get a set of closed equations,
must make a closure hypothesis, relating the streaming flu
to the hydrodynamic fields.

We will use the simplest possible closure hypothesis t
is consistent with the existence of the hydrodynamic fiel
We assume that all the correlations between Lyapunov
grees of freedom and the physical ones vanish, except
correlations described byD andE. We also exploit the fact
that the physical variables are set by thermal equilibrium,
thatn andT are independent of position and^v&50. To start
with, we have

^vydr x&5^vxdr y&5^vx&^dr y&50. ~22!

The average can be separated because there is no hyd
namic variable that describes this correlation. Finally,
product vanishes because^v&50. The accuracy of this as
sumption can be estimated by quantities such as

d5
^vydr x&

^v&^dr x&
, ~23!

where ^v&5^Avx
21vy

2&51. When considering a streamin
flux, such aŝ vydr x&, we haved,0.10, @d'0.07 for Fig.
5~d!# but d decreases as the wavelength of the perturba
increases. For quantities such as^vxdr y& that are not stream
ing fluxes,d is very small;d,0.05 and oftend,0.01.

On the other hand, correlations such as^vxdr x& do not
vanish because they are related to the hydrodynamic fieldD,

^vxdr x&5^vydvy&5
nD

2
. ~24!

We assume that̂vxdr x&5^vydvy&, because otherwise an
other quantitŷ vxdr x2vydvy& would be needed to describ
the correlations betweendr and v. Analogous arguments
lead to^vxdvx&5^vydvy&5nE/2. Equation~24! is the most
doubtful assumption of the closure hypothesis, for the so
modes typically have

^vxdr x2vydvy&

^vxdr x1vydvy&
;0.2. ~25!

Considering higher powers inv and using the same logic

^vxvydr y&50, but ^vx
2dr y&5nTXy . ~26!

The next rule may seem arbitrary,

^vx
2dr x&5nTXx , ~27!
3-8
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because we could have written^vx
2dr x&5^vx&^vxdr x&, and

interpret the second factor asD. But this would mean assum
ing thatvx is independent ofvxdr x . Equations~26! and~27!
are usually obeyed within 5%.

It is straightforward to apply this closure hypothesis to t
streaming fluxes. Putting the streaming fluxes into the hyd
dynamic equations, we have

]X

]t
1

1

2
“D5U,

]U

]t
1

1

2
“E50,

]D

]t
1T“•X5E,

]E

]t
1T“•U50. ~28!

We can now explain the existence of two shear modes
four sound modes at each wavelength. If we assume tha
hydrodynamic fields vary only iny, two equations decouple
from the other four:

]Xx

]t
5Ux ,

]Ux

]t
50. ~29!

These equations describe the shearing modes.
The other four equations are

]Xy

]t
1

1

2

]D

]y
5Uy ,

]Uy

]t
1

1

2

]E

]y
50,

]D

]t
1T

]Xy

]y
5E,

]E

]t
1T

]Uy

]y
50. ~30!

These equations resemble two sets of compressible E
equations, coupled by the terms on the right-hand side. T
have oscillating solutions with a frequency ofAT/2.

C. Instability of the shearing mode

The Eqs.~29! and ~30! are an incomplete description o
the hydrodynamic Lyapunov modes for their solutions gr
only linearly in time. The Lyapunov modes grow expone
tially with time, the growth rate being the Lyapunov exp
nent. In this section, we show that the growth rate of
shear modes can be explained by the hydrodynamic flu
05110
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d
he
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ey

-

e
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These fluxes also govern the decay of the usual hydro
namic modes. If a shear is imposed on a fluid, there is a
of momentum along the velocity gradient that reduces
magnitude of the shear. In the Navier-Stokes equations,
flux is represented by the viscosity.

The hydrodynamic fluxes have two components:
‘‘streaming’’ flux Fstream, and the ‘‘collisional’’ flux Fcoll .
The streaming flux gives the transport of the conserved qu
tity by the free movement of the particles. It has already be
included in Eqs.~28!, ~29!, and ~30!. The collisional flux
gives the transport of the conserved quantities during co
sions. It is not included in the above equations, because
were derived from a Boltzmann equation. In the Boltzma
equation, the collisional flux must vanish because the t
colliding particles are assumed to be at the same position@In
Eq. ~17!, both particlesA andB are atr.#

We can measure the different parts of hydrodynam
fluxes in a simulation. Just before each collision, we perfo
an orthonormalization on all the vectors, and meas
^vydr x&, which is the streaming flux ofXx . Just after the
collision, we orthonormalize again, and measure the co
sional flux ofXx . If this is carried out long enough, we ca
determine the spatial dependences of the fluxes, and the
ture shown in Fig. 8 emerges. In Fig. 8~a!, we see that both
the streaming and collisional flux tend to reduce the am
tude of the mode. When]Xx /]y.0, the fluxes are negative
indicating that negativeXx is being transported towards th
high Xx regions, reducing the amplitude of the perturbatio
Therefore, the cause of the exponential growth of the per
bation is not to be found there. On the other hand, Fig. 8~b!
shows that the collisional flux ofUx is positive when the
gradient is positive, indicating a ‘‘negative viscosity’’ tha
leads to the exponential growth.

But why should the viscosity be negative? For an exp
nation, see Fig. 9. Imagine there is a region withXx.0 lying
just above a region whereXx,0, as shown in the figure. Th
gradient ofXx is positive. A typical particle emerges from
the Xx.0 region, and encounters a typical particle from t
Xx,0 region in a head-on collision. Each particle’sdr and
dv is as shown in the figure. The collision rule is such th
after the collision, each particle’sdv is amplified. If the col-
lision is head on, each particle returns to its region
origin—with its original perturbation amplified. In this way
the gradient inXx increases.

Examining the conjugate partners of the shearing ex
nents confirms this explanation. In accordance with Eq.~7!,
Xx and Ux have opposite signs. Since theFcoll(Ux) is gen-
erated by gradients inXx , it changes sign with respect t
Ux , and becomes a downgradient flux that reduces the
plitude of the perturbation. All the other fluxes remain dow
gradient.

D. Calculation of the collisional fluxes

Having demonstrated the existence of a negative visc
ity, we would now like to calculate it. To do so, we will us
the Enskog equation, which is an extension of the Boltzma
equation to high densities. The Enskog equation has
same form as the Boltzmann equation, except the collis
operator is modified to
3-9
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CE5xsE fA~r!fB~rB!@d~qA82q!2d~qA2q!#V

3cosudqAdqBdu. ~31!

Two changes have been made to the Boltzmann collis
integral in Eq.~17! to yield this expression. First of all,
factor x.1 has been added to account for the increase
collision frequency due to excluded volume. We use@13#

x5
12~7n/16!

~12n!2
, ~32!

wheren is the density expressed as the fraction of the a
covered by the disks. The second change is to take into
count the fact that when two particles collide, they are
different positions. Thus,fB(r) in Eq. ~17! has been re-
placed byfB(rB). These subtle changes introduce the pos
bility of calculating the collisional fluxes.

Next, we can expandfB(rB) in a Taylor series:

FIG. 8. Xx @panel ~a!# and Ux @panel ~b!# and their streaming
fluxes,Fstream, and collisional fluxes,Fcoll , for the Lyapunov mode
i 5237, shown in Fig. 5~d!. The parameters areN5120, Lx515,
and Ly545. The simulational domain was divided into 20 bin
each bin beingLx wide andLy/20 high. Before each collision, we
measurednUx , nXx, and the streaming fluxes. After the collisio
the collisional fluxes were measured. This figure represents an
erage over 6000 collisions. All data are given in the dimension
units discussed in Sec. I C.
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fB~rB!5fB~r!1sn̂•“fB~r!1 1
2 s2~ n̂•“ !2fB~r!1•••.

~33!

This enables us to split̂cC& into three parts,

^cCE&5^cC&01^cC&11^cC&2 , ~34!

where

^cC&05xsE ~cA82cA!fAfBvABdqAdqBdn̂,

^cC&15xsE ~cA82cA!fA@sn̂•“fB#vABdqAdqBdn̂,

v-
s FIG. 9. The collisions that generate the anomalous viscos
The solid arrows represent the Lyapunov coordinatesdr and dv,
and the white arrow represents the velocities. The collision ta
place in a region where the gradient ofXx is positive. The upper
particle emerges from a region whereXx.0 and Ux.0; it has
dr x.0 anddvx.0. It suffers a head-on collision with a particl
emerging from the region withXx , Ux,0. The collision is such
that dvx of each particle is augmented, and the particles return
their point of origin, thus amplifying the gradient.
3-10
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^cC&25xsE ~cA82cA!fA@~s2/2!

3~ n̂•“ !2fB#vABdqAdqBdn̂, ~35!

where all the distribution functions are evaluated atr. Note
that ^cC&0 is simply the Boltzmann collision operator, mu
tiplied by c and integrated overq. As above, it vanishes
whenc is one of the conserved quantities in Eq.~11!. Fur-
thermore, for thesec, the remaining two expressions can
written as a divergence of a flux:

^cC&15x~s2/2!“•E n̂~cA82cA!fAfBvABdqAdqBdn̂,

^cC&25x~s3/4!“•E n̂~cA82cA!n̂•@fA“fB2fB“fA#

3vABdqAdqBdn̂. ~36!

Thus we can write

^cC&52“•Fcoll~c!. ~37!

Fcoll is the collisional flux of the quantityc, and can be
extracted from Eq.~36!.

The collisional fluxes, Eq.~36!, are linear in the
Lyapunov coordinates, and thus can be calculated using
closure hypothesis. The calculations are very long, so
will show only one calculation in detail.

As noted above, the collision rule fordr has the same
form as the collision rule for velocities. Therefore, one o
tains fluxes with a familiar form

“•Fcoll~X!5
nz

2
“D2nm@¹2X1“~“•X!#, ~38!

wherez and the ‘‘viscosity’’ m are

z5
p

2
nxs2, m5

Ap

60
nxs3T1/2. ~39!

For Fcoll(D), we have

“•Fcoll~D !5nz“•X2nk¹2D, ~40!

where the ‘‘thermal conductivity’’k is

k5
17Ap

48
xns2T1/2. ~41!

As stated above, the collision rule fordv has two parts.
One part has the same form as the collision rule fordr. These
pieces will give fluxes with the same form as in Eq.~38! and
Eq. ~40!, except thatX is replaced byU andD is replaced by
E. The second part off v , however, gives new results. De
note the fluxes due to this part byFcoll* . Evaluation of these
integrals gives

Fcoll* ~E!50, ~42!
05110
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but Fcoll(U)Þ0. We will now evaluate this flux.
Considering only the change indv provoked by the sec-

ond term offv in Eq. ~10!, we have

cA82cA5secuuvB2vAus21~drB2drA!•ûû8. ~43!

Inserting Eq.~43! into Eq. ~36! gives

Fcoll* ~U!52x~s/2!“•E n̂~drB2drA!•ûû8

3fAfBV2dqAdqBdn̂

2x~s2/4!“•E n̂~drB2drA!•ûû8

3@fA“fB2fB“fA#•n̂V2dqAdqBdn̂, ~44!

Following Ref.@9#, the first step is to take the integral overn̂,
considering the velocities as fixed. In two dimensions, t
amounts to integrating overu. Taking the limits of integra-
tion as2p/2<u<p/2 ensures that we consider only veloc
ties such that (vA2vB)•n̂>0. We must expressn̂ in terms
of û andv̂, wherev̂ is a unit vector pointing in the direction
of vA2vB . From Fig. 7, we seen̂5v̂ cosu2û sinu and û8

52v̂ cos 2u2û sin 2u. We carry out this substitution, an
get a series of terms proportional to cosnu sinmu. Only terms
containing an even power of sinu survive the integration
overu. This is sufficient to show that the first term vanishe
Equation~44! becomes

Fcoll* ~U!5
xs2p

16 E $~ v̂v̂1ûû!~S•û!1~ ûv̂2v̂û!~S•v̂ !%

3~drB2drA!•ûV2dqAdqB . ~45!

We have writtenS5fA“fB2fB“fA to lighten the nota-
tion. Now, we do the integration over the Lyapunov coor
nates, using the closure hypothesis given in Sec. III B. Si
the Lyapunov coordinates appear with an even function
the velocities, we average thedr’s to X. ~Recall thatû andv̂
are determined by the velocities.! The result is

Fcoll~U!5
xs2p

8 E E $1~ v̂•“ !1J~ û•“ !%

3~ û•X! f Af BV2dvAdvB . ~46!

Note thatv̂v̂1ûû51 and ûv̂2v̂û5J, where

J5S 0 21

1 0 D
is a matrix that rotates a vector by 90°. Now, we chan
variables tov15(vA1vB)/A2 andv25(vA2vB)/A2, and
do the integral over the velocities. The unit vectors are j
functions of the angle ofv2 . The result is
3-11
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Fcoll~U!52njF1“•X1JS ]Xy

]x
2

]Xx

]y D G , ~47!

wherej is a new tranport coefficient

j5
p

4
xs2nT. ~48!

As we show below, Eq.~47! gives a term that accounts fo
the growth of the shear modes.

E. A quantitative estimate of the shearing exponents

Putting the computed collisional fluxes into Eq.~29!, the
governing equations of the shear mode become

]Xx

]t
5Ux1m

]2Xx

]y2
,

]Ux

]t
5m

]2Ux

]y2
2j

]2Xx

]y2
. ~49!

Since Eq.~49! is linear, we can get a dispersion relation
inserting

Xx5X̂elt1 iky, Ux5Ûelt1 iky. ~50!

Putting this solution into Eq.~49! and eliminatingX̂ and Û
gives

l56Ajk2mk2. ~51!

The first term above corresponds exactly to what is obser
Taking the positive sign, we have the growing mode, a
taking the negative sign, we have its conjugate partner. F
thermore, the growth rate is linear ink. The second term
however, is not what is observed. In the Lyapunov spec
the sum of each exponent and its conjugate partner is exa
0. But according to Eq.~51!, this is not so. The sum of eac
mode and its conjugate partner is22mk2,0. Therefore, it is
tempting to dismiss the second term, because it is not t
reversible. But if we setm50 in Eq. ~49!, it seems we
should also setj50. We do not currently have any satisfa
tory reason for keepingj but eliminatingm.

Another objection to Eq.~51! is that it predicts that shor
wavelength instabilities grow most rapidly, and therefore
long wavelength patterns observed in Fig. 5 are unstable,
would not be observed. This is partly correct—the pattern
Fig. 5 are unstable, but they are observed because the
odic orthonormalization removes the components at hig
wave numbers. It is an implicit assumption of the theory t
this is the only effect of the orthonormalization.

We now make a quantitative comparison between
theory and the simulation. Comparing Eq.~51! with Eq. ~8!,
we see

cl52pAj. ~52!

In Fig. 10, we present a comparison of the theory with
05110
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observed values. Close agreement between the theory
the simulation is not expected because the theory negl
the streaming fluxes. In particular, the collisional flux mu
vanish atn50, so theoretical curve in Fig. 10 must pa
through the origin. The smallness of the streaming flux
Fig. 8 (n50.56) suggests that a calculation of the stream
fluxes is not enough to account for the difference betwe
theory and simulation. Nevertheless, Fig. 10 shows that
kinetic theory is a good first step in the quantatative exp
nation of the shear modes.

F. The sound modes

Adding the collisional fluxes, the sound mode equatio
become

]Xy

]t
1

1

2
~11z!

]D

]y
5Uy1m

]2Xy

]y2
,

]Uy

]t
1

1

2
~11z!

]E

]y
5m

]2Uy

]y2
1j

]2Xy

]y2
,

]D

]t
1T~11z!

]Xy

]y
5E1k

]2D

]y2
,

]E

]t
1T~11z!

]Uy

]y
5k

]2E

]y2
. ~53!

Unfortunately, these equations do not produce unsta
modes, so the growth of the sound waves is not explained
the kinetic theory. This can also be verified in simulation
but it is more difficult to do, because the sound modes
continually moving, so one cannot take a long time avera
of the fluxes to see their relation to the fields. This difficu
can be overcome by calculating the correlation function
tween each field and its fluxes. However, there is anot
problem, because the fluxes are dominated by the movem
of the sound wave, and not by its growth or decay. But if
add the correlation functions of all four sound modes
gether, the fluxes responsible for this translation will th

FIG. 10. A comparison of computed and observedcl . The
circles are the observed values ofcl from Fig. 6 for the shearing
mode, and the solid line is Eq.~52!.
3-12
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cancel out, because two sound modes propagate in the
tive y direction and the other two in the negative directio

The results forUy and E are shown in Fig. 11. We se
that in both cases, the flux has the opposite sign of the
dient. Therefore all fluxes are dissipative, tending to red
the amplitude of the perturbation. The kinetic theory a
proach does not explain the growth of the sound modes

Equation~53! predicts soundlike waves at two differe
frequencies,

v5 i Fc
*
2 2

j

2
6A2c

*
2 j1j2/4G1/2

k1O~k2!, ~54!

wherec* 5AT/2(11z), which would be the sound speed
we set the right-hand sides of Eq.~53! to 0. In Fig. 12, we
compare the observed values ofv/k ~the phase velocity of
the waves! to Eq. ~54!. The observed sound speed is n

FIG. 11. The spatial correlations betweenUy @panel~a!# andE
@panel~b!# and their fluxes. The solid lines are theUy or E space
autocorrelation functions. The dotted lines are the spatial corr
tion functions of the fields with their fluxes. To obtain this figur
200 different profiles ofUy , E, and their fluxes were constructe
for each of the four sound modes. The spatial correlation func
was calculated for each profile, and all the profiles for a sin
mode were averaged together to give that mode’s correlation f
tions. Then the corresponding functions of the four modes w
added together to give these curves. The system used to con
this figure is the one shown in Figs. 3 and 5.
05110
si-

a-
e
-

t

equal to either of the two values predicted by Eq.~54!, but it
is very close toc* . ~Note thatc* contains both the stream
ing and the collisional fluxes, unlike our estimate for t
growth rate of the shear mode in Fig. 10.! The agreement
betweenc* and the observed values is too good to simply
a coincidence. Therefore, we believe that the left-hand s
of Eq. ~53! correctly describes the sound modes, but the d
fusive terms on the right-hand sides do not seem to be
rect. This is especially true for the term proportional toj,
which modifies the predicted sound speed in a way that is
observed. But there seems to be no reason why we shoul
j50 here, and not in Eq.~51!. Note that the periodic or-
thogonalization constrains the sound waves to have the s
frequency, because they must always remain orthogona
one another. This fact has not been taken into account in
~54!. Finally, we note that the most doubtful closure assum
tion, Eq. ~24!, concerns only the sound modes.

The observed sound speedc* is very close to half of the
observed sound speed@2#. This is because the pressure of t
the hard disk fluid can be written

p5~11z!nT. ~55!

Therefore, the left-hand sides of Eq.~53! are closely related
to the compressible Euler equations, withXy andUy in the
role of the velocity, and withD and E as the temperature
Certain numerical factors, such as the 1/2 in the equations
Xy andUy , reduce the frequency by a factor of 2.

This observation raises the question of the relation
tween the transport coefficients and the Lyapunov expone
Is it possible to extract the transport coefficients from cert
hydrodynamic Lyapunov exponents? This paper sugg
that it is not possible. We were able to estimate the expon
associated with the shearing mode@Eq. ~51! and Fig. 10#.
The origin of this exponent’s growth is the upgradient tran
fer of dv due to the second term of Eq.~10!, thedv collision
rule. This term has no analog in velocity collision rule, E
~1!. The viscosity of the hard disk fluid has entirely differe
origin. It is due to the downgradient transfer of momentu
during collisions, and the correlations betweenvx andvy .

a-

n
e
c-
e
uct

FIG. 12. A comparison of the theoretical and observed so
speeds. The upper and lower theoretical curves are the pred
sound speeds. The middle curve isc* , the predicted sound spee
with j50.
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IV. CONCLUSION

We have presented an explanation for the ‘‘hydrod
namic’’ Lyapunov modes first observed by Posch and H
schl @2#. We consider the components of the Lyapunov v
tor associated with each particle to be quantities carried
that particle. We then look at how these quantities cha
during a collision, and we find that certain combinations
these quantities are conserved. The hydrodynamic Lyapu
modes arise from these new conservation laws in the s
way the hydrodynamic modes arise from the conservatio
mass, momentum, and energy. This is the central idea of
paper. We attempted to apply this idea in more detail
defining a generalized Boltzmann equation. We are able
explain a number of properties of the exponents: the e
tence of two ‘‘shear’’ modes and four ‘‘sound’’ modes fo
each wave number, and an estimate of the Lyapunov ex
nent associated with the shearing mode. On the other h
the statistical approach of the Boltzmann equation introdu
certain terms that are not observed. Neither is our theory
to explain the growth of the sound modes~although the
phase speed of the waves is correctly predicted!. This com-
bination of success and failure leads us to the conclusion
d

m
d
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the link between the conserved quantities and the hydro
namic Lyapunov modes is correct, but it must be elabora
in a way different than the kinetic theory approach presen
here. An improved theory may have to explicitly treat t
orthonormalization of the displacement vectorsdGi . In our
theory, we do not consider the orthonormalization, assum
that its only effect is to suppress short wavelength pertur
tions. Another possible improvement would be to relax t
isotropy assumption of Eq.~24!.

This work also suggests that a simple relation between
hydrodynamic Lyapunov exponents and the transport coe
cients does not exist. The hydrodynamic exponents a
from a term in the velocity space displacement collision ru
Eq. ~10!, which has no analog in the velocity collision rul
Eq. ~1!.
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