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Origin of the hydrodynamic Lyapunov modes
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Recent studies of the Lyapunov spectrum of the hard sphere fluid reveal that there are “hydrodynamic”
Lyapunov exponents corresponding to collective perturbations in phase space. We show that these collective
perturbations are due to the conservation of certain quantities during collisions. These new conservation laws
generate new hydrodynamic fields, just as the conservation of mass, momentum, and energy generate the
density, velocity, and temperature fields. We then construct a detailed theory of the new hydrodynamic fields
using a kinetic theory approach. This theory predicts several properties of the modes, but not all of them. This
suggests that the underlying idea is correct, but a detailed theory must be elaborated in another way. The
hydrodynamic exponents are not related in a simple way to the transport coefficients.
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[. INTRODUCTION are the long wavelength fluctuations of these fields. We at-
tempt to extract detailed predictions from this theory using a
It is now possible to study deterministic chaos in systemsinetic theory approach. The theory has a number of suc-
with many [O(10%) ] degrees of freedom. Much work has cesses, indicating that the underlying approach is correct, but
been done on the Lyapunov spectrum of these systemd!so a number of failures, suggesting that alternatives to the
These studies have resulted in a clearer understanding of tiénetic theory approach must be considered.
origin of irreversible, macroscopic behavior in systems with
reversible microscopic dynamics. They have also established A. The hard sphere fluid
connections between the transport coefficients and the
Lyapunov spectrunil—6].
One example of this kind of study is the calculation of the
Lyapunov spectrum of the hard sphere fl{ild-3]. One of
the principal discoveries is the existence of “hydrodynamic

The hard sphere fluid was one of the first model fluids to
be studied9]. The collisions between the particles are as-
sumed to be instantaneous, and to conserve energy and mo-
» mentum. If the forces between two colliding particles are

exponents, which correspond to collective, “hydrodynamic” assumed to act only glong the Ii.n.e connecti.ng th_e particles’
perturbations in phase spa2]. These modes, which we centers, the pqstcolhsmngl.velocme,élB are given in terms
will call “hydrodynamic Lyapunov modes,” are intriguing ©f the precollisional velocities » g by
because they may be related to hydrodynamic fluctuations in
a simple way. If it were possible to extract transport coeffi-
cients directly from these exponents, it would illuminate the
relation between the reversible, microscopic dynamics an#here the subscripté and B label the colliding particles.
the irreversible macroscopic behavior of fluids. Two meth-The unit vecton points from the center of particke towards
ods of relating transport coefficients to Lyapunov spectrahe center of particld. In this paper, we consider the two-
already exis{6—8|, but they involve setting up nonequilib- dimensional hard sphere fluid composedNofparticles of
rium simulations or locating special phase space trajectoriegliameters in a doubly periodic domain of sizie, XL, .
They do not consider the perturbations underlying the expo-
nents. Even if the hydrodynamic Lyapunov modes have no
connection to the hydrodynamic fluctuations, they are still
interesting because they are responsible for the discontinuous The Lyapunov exponents describe how quickly two iden-
structure of the Lyapunov spectrum near zero. tical systems with almost identical initial conditions diverge
This paper is organized as follows: In Sec. II, we presentn phase space. Consider a system at the &) in phase
a survey of the simulational results, emphasizing the hydrospace ofL dimensions. The system follows some trajectory
dynamic exponents. Some of these results have been préirough phase space, arriving Bt) at timet. We express
sented elsewherd, 2], but they are included here for com- this mathematically by defining; to be an operator that
pleteness. The principal result is the existence of Lyapuno@Volves a point in phase space forward a time
exponents associated with a hydrodynamic, collective pertur-
bations. These exponents are proportiondl T, whereL is I'(t)=51I(0). @
the wavelength of the perturbation. In Sec. Ill we present a
theory of the hydrodynamic exponents. Our starting point igNext, consider a second systemlat oI', wheredI" is in-
the observation that certain quantities are conserved duringnitesimally small. After a time, this system moves to
collisions, and these conserved quantities give rise to new
hydrodynamic fields. The hydrodynamic Lyapunov modes I'(t)+6I'(t)=S[T'(0) + 6T'(0)]. 3

va' =vat+f, vg' =vg—f, f=(vg—va)-nn, (1)

B. Lyapunov spectrum

1063-651X/2001/645)/05110314)/$20.00 64 051103-1 ©2001 The American Physical Society



SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 64 051103

Then the Lyapunov exponeitis defined to be 20
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Note that\ has units of inverse time. It is thus the growtn
decay rate of the perturbatiodl’. In general\ is a function 05 |
of bothI" and 8I'. This is unfortunate, because bdthand |
o6I' contain L numbers, so thain is a function on a a)
2L-dimensional space. However, the situation can be im- 0.0 . - -
proved because thél" are infinitesimal. This means that 0 180 360 540 720
their evolution depends only on the linearized dynamics: !
I'(t)+ oI'(t)=SI'(0) + M- 6T, (5
where M is simply anL XL matrix. Since M is a linear 10
operator, knowing\(I',8I") for a set of SI" that spans the
phase space enables one to calcul(E, sT") for any 6T . 08 |
By convention, we associake, with the fastest growing di- P,
rection 6I'y; N, with the fastest growing directio®T’, 0.6 r gy
which is also perpendicular téI'; (8I';- 6I',=0), and\; < Iy
with the fastest growing directiodl’; with 6I';- 6I';=0 for 0.4 t -
j<i. The vectord 8I';} are often called the “Lyapunov vec-
tors.” 02 | e
Furthermore, for ergodic systems, the Lyapunov spectrum b)

{\;} is independent oF . This enables us to do away with the 0.0 , Q@
dependence ol, and speak about the Lyapunov spectrum 660 690 720

of a system. A dynamical system is ergodic if its invariant i
distribution cannot be subdivided into smaller invariant s 1 The spectrum of Al=360 hard disk fluid in a square

pieces. This is a more general condition than equilibriumygomain L.=L,=45=2255). (8 The first 2N Lyapunov expo-
S . . X y . :
systems out of equilibrium can also be ergodic, but all equinentgthe second B are just the negative of the exponents shpwn
librium systems, including the one studied in this paper, argy) The smallest positive exponertisote difference in the axis).
ergodic.
Il. A SURVEY OF THE LYAPUNOV SPECTRA
OF THE HARD DISK FLUID

C. Algorithm
The algorithm for calculating the exponents is the same as A. System-size dependence
used by Dellago, Posch, and Hooyéi, which is a gener- The Lyapunov spectrum has a special symmetry: each

alization of Benettin's algorithm for continuous-time sys- exponent has a partner that is exactly its negative. This is the
tems[10,11]. A set of 2N (or 4N) vectors{sI';} is evolved  “conjugate pairing rule.”[1] Therefore, it is necessary to
forward in time with Gram-Schmidt orthonormalization be- calculate only half the spectrum. The second half contains no
ing periodically applied td I';}. This is necessary because additional information, and is simply the negative of the first.

the vectors grow rapidly, and are attracted towafHs. The In Fig. 1, we show half of a typical spectrum of the hard
Lyapunov exponents are computed from the growth rates ofphere fluid at equilibrium. The parameters of the system are
the vectors. N=360, L,=L,=45. The spectrum can be divided into two

All the results presented in this paper are numerical, angarts. Foii <681, the exponents fall onto a well defined con-
thus presented in dimensionless units. The particle radiugnuous curve. On the other hand, for 682<720, the ex-
defines the unit of distance and the particle mass defines thgonents appear in small groups at discrete values. The dis-
unit of mass. The unit of time is fixed by setting the averagecrete part of the spectrum corresponds to hydrodynamiclike
squared velocity of the particles to 1. The diameter of thecollective perturbations, as we will show later in this section.
disks is thereforer=2, and the temperature of the gasTis If the number of particles increases with density kept con-
=1/2 (with Boltzmann’'s constarkg=1). We express den- stant, the continuous part of the spectrum remains approxi-
sity using the “area fraction”v=Nmrzl(4LXLy), the frac-  mately the same, except that the exponents become more
tion of the space covered by the disks. The maximum posdense. The largest exponext increases very slowly. The
sible value ofv is 77/(2\/§)~O.9069, corresponding to a value of the smallest exponent in the continuous part remains
hexagonal array of disks in contact. constant. The discrete part of the spectrum also changes, but
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FIG. 2. The transition of the spectrum from a squag=L,

=45) to rectangularl{,=15,L,=45) system. The number of par-
ticles is adjusted to keep the density equal in all simulations. The
spectrum in Fig. 1 appears as a single columh at 45; for each 1.0
exponent, a dot is placed on the graph. Since all those exponents
havelL,=45, they form a single column. The spectra for the other
values ofL, are displayed in the same way.

>OOOOOOQOO

these changes depend also on the aspect ratio of the simula- <05
tional domain. If we consider only square domairs, ( o¥%o o
=L,), increasing the number of particles causes each group 0%
of exponents to approach zero while remaining distinct from
all the other groups. The number of exponents in each group
does not change, but new groups of exponents separate from 0-0220 295 230 235 *éio
the continuous part of the spectrum. On the other hand, if the i
number of particles is decreased, the groups of exponents
move away from zero and merge one by one with the con- FIG. 3. The same as Fig. 1, but for =120 h_ar(_j disk fluid in
tinuous part of the spectrum. Small systems exhibit only thé réctangular domainL{=15,L,=45). The density is the same as
continuous part of the spectrum. in Fig. 1,_ but_LX is reduced by 1/3. The stars mark the exponents
If one reduces., while keepingL, constant, another be- featured in Fig. 5.
havior appears. Some groups of exponents increade, as
decreases, and finally merge with the continuum. Other 2 81y ov;
groups split in two parts, one of which remains independent ]
of L while the other part rejoins the continuum. This pro- 5 9
cess is shown in Fig. 2. We see that a long narrow system EJ: o] ) ( 2 5”1’)
has a much simpler structure than the square system. We will

therefore concentrate on the spectrum at the extreme left Qf/e have divided the M-dimensional vectowT; into two
Fig. 2, where only the discrete exponents independeht,of parts 6T, and 6T',. T, contains the configuration space
remain. This spectrum is shown in Fig. 3. displacementssr{”, and T, the velocity-space displace-
mentsdv!" . 8T, and oT', are both N component vectors
and we can consider them existing in the same
2N-dimensional space, with the angle between them being
Now we are ready to inspect thl"; . Recall that a given % - IN Fig. 4, we see that this angle is always sniag.,
cosb,,~1) wheni<2N. This is especially true whenis

particle is associated with four components of ealh. . T : .
Two components give the displacement of that particle in;:Iose to . Therefore, when investigating tt&’, it suffices

configuration space, and the other two give its displacemen? examine the configuration space displacement compo-

in momentum soace. We denote the displacement in confi nents, because the velocity displacements are similar. This
. pace. W ) disp gl‘%imilarity between the velocity and position displacements
ration space of particlg as or;’ and its momentum space

. was noted by the first paper that studied Lyapunov exponents

displacement a§v}'). (In the following, we always useto numerically[4].

denote the Lyapunov index, afdo indicate a particle. A Lyapunov vector is closely related to its conjugate.
Armed with this notation, we can now discuss the Consider an exponemt and its vectorsT'. As stated at the

Lyapunov vectorssl';. First, we consider the correlation beginning of this section, each exponent has a “conjugate”

betweensr{? and sv{" . We calculate partner\* with a vectorsI'* such that\* = —\. This con-

_oh, ot ©
Y2 Jer,J| T, |

CoSOy, = [ (

B. General properties of the Lyapunov vectors
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1.0

sequence of the translational invariance of the laws govern-
ing the motion of the particles. There are two exponents
because there are two independent directions available.
The “velocity displacement” exponents: these two zero
exponents havév;=A, whereA is again a constant vector,
independent of. This perturbation corresponds to changing
the velocity of the center of mass without changing the rela-
08 r ] tive velocity of any of the particles. Again, the sequence of
> collisions does not change. These exponents express Gal-
ilean invariance.
‘ . . The “time displacement” exponent: this exponent has
0 60 120 180 240 orj=avj, wherev; is the velocity of particlg anda is a
! scalar. This perturbation corresponds to perturbing the sys-
FIG. 4. The angle betweedI", and T, (see textfor the spec- tem i_n thg direction of its trajectory in phase_ space. The
trum shown in Fig. 3 =120,L,=15,L,=45). Fori<2N, oT, collisions in the perturbed system will occur slightly earlier
and T, are always nearly parallel, especially fonear N. When  (Or later, depending on the sign af than in the unperturbed
i>2N, oI, and 8T', are always nearly antiparalléhot shown. system. This exponent expresses time translational invari-
Note the curious behavior of the largest exponértX), which is  ance.
detached from the other exponents. As density is decreased, we The “energy displacement” exponent: this last exponent
always observe that c@g,>0.8, except the for largest=1, expo- ~ hasév;=av;, and corresponds to multiplying the velocity
nent. of each particle by a factor. The perturbed and unperturbed
systems both have the same sequence of collisions, but one
jugate pairing rule holds for all Hamiltonian systems, andhas a higher collision frequency than the other. The two sys-
follows from time reversibility: if two trajectories separate tems separate in phase space, but only linearly. The
exponentially in time, reversing the direction of timend Lyapunov exponent, which measures exponential separation,
thus the direction of the trajectoriesvill cause them to ap- is still zero. This exponent is a consequence of the linearity
proach one another exponentially. We find thhtis related  of the collision rule, Eq(1), in v.
to T™* by We now investigate the nonzero exponents by projecting
the or; onto the positions of the corresponding particles. This
oIy =or,, oIF=—4r,. (7 is done in Fig. 5, where we show four typical vectors, one
from the continuous part of the spectrum, and the rest from

Note that the position and velocity coordinates exchangéhe discrete part.
places. This relation is observed very accuratéty more ~ The continuous part of the spectrynepresented byl’;
than eight decimal places for some paiut this accuracy N Fig. X@)] corresponds to disorganized and local perturba-
is very sensitive to the presence of other exponents. Whet#ions. Many particles have very small contributions&b, .
two exponents are close together, Ef).is much less accu- AS the Lyapunov index increases, the modes become less
rate, or even false, probably because the vectors of the twi§cal: more and more particles have significant amplitudes.
exponents can be mixed together. However, the modes remain disorganized. These modes are
Note that Eq(7) shows that the simple explanation of the also very time dependent. If the simulation were to run a bit
conjugate pairing rule given above is not true. If reversing|0n99f or a bit shorter, the set of contributing particles would
time simply reversed the direction of the trajectories, @. change, and Fig. (& would look completely different. On
would be 8T* = 6T, and 8T* =— 4T, , i.e., the position j[h.e. other hand, if the calcglia'glon were started.\{wth a d|ﬁer§nt
displacements would be unchanged and the velocity digihitial 6I'y (but the same initial particle velocities and posi-
placements reversed. Reversing the direction of time doeions; i-e., the same initidl) and run for the same length of

not change the central trajectoly(t); it is simply traced time, Fig. 3a) would not change at all.
backwards in time. But the “satellite” trajectorieE(t) In the discrete part of the spectrum, the exponents corre-

+8T(t) do change; they are not simply reversed. spond to collective motions of the particles. This explains
' why these exponents appear in small separated groups at

discrete values. For exampleyzs=\ 37 (in the limit of an
average over an infinitely long timéecause both exponents
Turning our attention to individual exponents, we cancorrespond to transverse, sinusoidal shearing perturbations
readily discern the physical meanings of the six zero expof 6I',371is shown in Fig. §d), and dT",34is the same, but with
nents. a phase shift ofr/2]. Higher harmonics of the shear waves
The “position displacement” exponents: these two zeroalso exist. The pair of exponentss; and\ 3o correspond to
exponents haveér;=A, whereA is a constant vector, inde- transverse shear waves with a wavelength gP. Note also
pendent ofi. This perturbation consists of displacing all the that\ y30=\ 31~ 2\ 37. As L, is increased further, it is pos-
particles equally in the direction @&. The sequence of col- sible to see the third harmonic, then the fourth, and so on.
lisions is not changed; the location of each collision is The exponenta .3, through\,35 corresponds to longitu-
merely translated in space. These two exponents are a codinal waves, where compressive motion is coupled to a heat-

09 |

cos 8,

0.7

C. Characterization of the Lyapunov vectors
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FIG. 5. Lyapunov vectors corresponding XQ, A3z, Noz7, and\,sg Of the hard disk fluid whose spectra is shown in Fig.N8 (
=120, L,=15, andL,=45). The circles show the positions of the particles at the end of the simulation. In panéts, (d), and(e), the
arrows shomﬁr}') , the components ofl'; that describe the configuration space displacement of pajticlae velocity space displacements
are nearly equivalentThe lengths of the vectors are scaled by the maximum length. If the length of a vector is less than 0.16, no vector is
shown. In panelc), we shade the particles witér;-v;>0.

ing or cooling of the gas(In Fig. 5, we show position per- :(an/Ly))‘/_ One could also takk= (27n/L,)X, but these

turbations or; not velocity perturbationsév;, but for — oynqnents are lost in the continuous part of the spectrum. As
nonzero vectors, these two quantities are closely correjated.” . . d th by 2 /L)%
These waves resemble sound waves, but they do not have the IS Increased, the exponents generate By(2mn/Ly)x

same relation between velocity and position displacementd€crease, emerge from the continuum, and join those gener-
In true sound waves, the velocity and position displacementgted byk=(2mn/L,)y whenL,=L,. This process can be
are out of phase, but in the longitudinal Lyapunov waves, theseen in Fig. 2. It is also possible thiatbe oriented diago-
two displacements have the same phase. Furthermore, thesally. This complicates the spectrum of square systems.
waves do not propagate at the sound speed, but they do have But Eq. (8) renders interpretation of the hydrodynamic
higher harmonics just as the shear waves. Nevertheless, wgapunov modes difficult. The simplest idea is that the col-

will refer to these Lyapunov modes as “sound modes.”  |ective perturbations in phase space are equivalent to collec-
For long, rectangular systems, the Lyapunov exponents ifive perturbations in velocity space, i.e., the shear wave of
the discrete part of the spectrum obey Fig. 5(d) is equivalent to imposing a infinitesimally small
ne nd sinusoidal shearing perturbation on a fluid in equilibrium.
— A +O(1L%), n=0.1,..., (8) The phase space perturb_atlon woqld then decgy at the same
Ly L§ Y rate as the hydrodynamic one, witt—~1/L2. This would

establish a simple and direct link between the transport co-

wheren is the mode numbelThe zero modes can be con- efficients(such as the viscosityand the Lyapunov spectrum.
sidered thex=0 members of this serigsThe upper limit on  However, this interpretation is excluded by E§) because
n is fixed by the continuous part of the spectrum. When the\~1/L.
exponent predicted by E@8) falls in the continuous part of We have measured, andd, for a range of densities by
the spectrum, it no longer exists as a discrete mode. The firgtinning a series of simulations with the same density but
term in Eq.(8) also appears in a mathematical model of thedifferent L, and then measuring the exponent of tive 1
Lyapunov exponent§12], where the evolution of6I'} is  waves. Plotting\L, against 1L, gives a straight line with
modeled by generating and applying random matrices of gloped, and intercept, . In Fig. 6a), we show the values
form consistent with the physics. Note thgt has dimen-  of ¢, measured by this method.
sions of velocity andl, of a diffusivity. These two quantities In Fig. 6(b), we showd, as a function of density. This
depend on density and on whether one considers a sound gaantity is much more difficult to measure thap, because
shearing mode. one must measure small changea In, asL, becomes large

The structure of the discrete part of the spectrum can bgndx becomes small. Small errors Mncause large errors in
explained by Eq(8), together with the observation that each ¢, . Also, for 0.25< »<0.35, the shear and sound modes are
possible wavenumber vectirgenerates six exponents: two quite close together, and they can mix with each other, fur-
shearing modes and four sound modes. In narrow rectangul@ier complicating the analysis. Nevertheless, certain trends
systems(as in Figs. 3 and 5 k is parallel to they axis: k  emerge from the data. The most evident is tthat-0. The
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25 a) ‘ ' — fields. When we consider linear, sinusoidal perturbations of
these fields, two equations decouple from the other four. The

20 | * 1 two decoupled equations give rise to the shear waves while

. © the other four are the origin of the sound waves.
15 | o ] As with the usual hydrodynamic equations, the resulting
S *o equations are not closed: they contain higher moments. We
10 | . Z © ] make a simple closure hypotheses: that the hydrodynamic
o ® © fields contain all the information about the correlation be-
5 G 8 ® ® ] tween the perturbationsr and dv, and the velocity . Using

9 ® this assumption, we are able to calculate the collisional
fluxes of the conserved quantities, and we find a negative

0.0 0.2 0.4 06 0.8 diffusion constant that explains the growth of the shear

M modes. The theory is unable to explain the growth of the
sound modes, although it accurately predicts their frequency.
A. The hydrodynamic fields
200 b) ' ' % It is possible to show that during collisions, the perturba-
* tion in position, ér, follows the same transformation rule as
150 | ] the velocities given in Eql),
* Otp=0rp+f,, oOrg=6rg—f,, f,=(6rg—ory)-nn,
< 100 | F ] 9)
o}
*
x $* 7 where the primes indicate postcollisional quantities. On the
00 % © ] other hand, when one considers the velocity perturbation,
S two terms appear if :
0 , 0990009979
0.0 0.2 0.4 06 0.8 Svp=ovatf,, OSvg=dvg—T,,
v
FIG. 6. The dependence of andd, in Eq. (8) as a function of f,=(dvg—dv,)- nn+Vo ! sechd(Srg— rp)-uu’,
the area fractionv. The circles correspond to the shearing mpate (10

example is shown in Fig. (8)], and the stars correspond to the
soundlike modegan example is shown in Figs(t§ ©]. At each  whereV=|v,—uvg| and§ is the angle betweengz— v, and
density, several simulations were done, permittqgandd, to be 1 \We define the unit vectot such thatn-i=0 andnxi

estimated using Ed8). =1. (Here, we define the cross product to be a scalarb
=a,b,—a/b,. If our two-dimensional space were embed-

diffusivity does not represent a kind of damping thatded in three dimensionsxX b would be thez component of

counters theO(1/L,) growth of the perturbation. At small S i
densitiesd, seems to diverge. Note that tends to a con- (he usual vector cross prodyciVe defineu to be a unit

stant asv—0. Thus at very small densities and finite wave- vector perpendicular to the precollisional relative velocity
lengths, the quadratic term in E@®) may dominate. Atlarge and u’ to be perpendicular to the postcoliisional
densities, the two types of modes have very different valueselative velocity, so that yg—va)Xu=(vg—vs) XU’
of d, : the diffusivity of the sound modes may diverge while =|vz—v,|=V. Figure 7 summarizes these definitions.

thed, of the shear modes approaches a constant. The first term off, in Eqg. (10) has the same form as &f
andf. But there is a second term that depends in a compli-
Ill. A THEORY FOR THE HYDRODYNAMIC cated way on the geometry of the collision: This new term is
LYAPUNOV MODES very important, because it is responsible for the exponential

. . . growth of the phase space perturbations. It becomes very
In this section, we develop a theory of the “hydrody- j3rqe \wheng— /2 or ¢—— /2, i.e., when the collisions
namic” exponents. The theory explains why the growth rates, .o nearly tangential.
are proportional to 1/, what the mechanism of the growth Using Egs.(1), (9), and (10) one can show that certain

is, and _Why two types of modes appear. Our th_eory para"elﬁuantities are conserved during collisions:
the derivation of the usual hydrodynamic equations from the

BoItzman'r! equatipns. First, we qonsidﬁrg and_&vi as vec- Srp+ Srp=Orp+ drg,
tor quantities carried by the particljeWe identify six func-
tions of ér and dv that are conserved during collisions.
These six quantities are associated with the six zero modes
discussed in Sec. Il C, and give rise to six new hydrody-
namic fields. Next, we derive equations for each of these new v Ot vg Sg=va- Orptvp:- Orp,

Svpt Svg= Svat Sug,
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a) t U n=(1), nu={v), nT=3((v—u)?). (13

These definitions assume that all particles have the same
mass. When the particles have different masses, it becomes
more convenient to use the mass dengitynstead of the
number density.
There is one difference between Eg2) and Eq.(13). In
A , B Eqg. (13), all the conserved quantities are conserved by both
the collisions and the free motion of the particles. This is not
so in Eq.(12) for X and D change during the free motion

where 8r = Sv. However, sinceSv and &r are roughly par-
allel (as shown in Fig. % the free motion simply multiplies
X andD by a constant. Furthermore, this changeSotiuring
the free motion of the particles will be taken into account in
b) t the next section.
We will analyze the hydrodynamic Lyapunov modes as
sinusoidal perturbations of the new hydrodynamic fields

. given in Eq.(12). For example, the mode shown in Figdb
is a perturbation oK with a wavelength equal tb, . Figures

, 5(b) and 5c), show thatsI',55 involves sinusoidal perturba-
u tions of bothX [Fig. 5b)] and D [Fig. 5(c)]. We will next

A B use kinetic theory to construct equations governing the new
hydrodynamic fields. These equations will explain the ap-
pearance of two shear modes and four soundlike modes at

FIG. 7. The unit vectors, 1, U, andu’ for two different colli-
each wavelength.

sions. The wide white vector is,—vg. The anglef is indicated
by the double arc betweemandv,—vg. In panel(a) §=—20°,

and in panelb) 6=75°. B. The hydrodynamic equations
) , , , We will derive equations for the new hydrodynamic fields
Up  SUpT VG OUE=UA  OUAT VR SUB. (1)) from a generalized Boltzmann equation,
These conserved quantities correspond to the six zero expo- d¢
; . . . —+v-V,¢p+6v-Vs5¢=C, 14
nents discussed in Sec. Il C. The first conserved quadtity at ¢ (Pt ov-Vod (14

corresponds to the position displacement exponents. The sec-
ond quantity,dv corresponds to the velocity displacement
exponents. The dot producis ér andv - dv correspond to
the time and energy displacement exponents, respectively.

As we will see, the six conserved quantities in Effl) are ¢=¢(v,6r,6v,r,t) (15
microscopic quantities that underlie six new hydrodynamic

fields. Recall that hydrodynamic modes exist in ordinary flu- . he density of il ith veloci q ina th
ids because particle interactions conserve certain quantitied!VeS the density of particles with velocityand carrying the
rturbationssr and v at positionr at timet. The general-

For example, momentum cannot be created or destroyed o . ) i .
collisions. Thus, a local concentration of momentum decay _ed.d|st.r|but|on f_unct|on¢? IS Te'ated to the familiar velocity
slowly because the collisions cannot destroy momentum: théistribution functionf of kinetic theory by
momentum must be transported by diffusion. In the same
way, introducing a local concentration of any of the quanti- n )
ties in Eq.(11) will change slowly since none of these quan- f(v)= f j pdor dﬁv=me_” T (16)
tities can be destroyed by collisions. We would therefore like
to construct hydrodynamic equations for the coarse-grained
fields corresponding to the conserved quantities. Let us déA/e have sef equal to the Maxwellian, because we are only
fine the new hydrodynamic fields, U, D, andE: concerned with equilibrium systems in this paper. The
Lyapunov coordinates are coupled to the physical ones in
nX=(sr), nU=(év), nD=(v-8r), nE=(v-bv). ways that will be discussed below. The notatiopp in Eq.
(120 (14 indicates the gradient ap with respect tor andV 5. ¢
indicates the gradient ap with respect todr. The third term
Here, the angu|ar brackets S|gn|fy an average over the pap.n the left r_epresents the Streaming motion between colli-
ticles in a small area, amilis the number density. The usual sions whendr= év. The term on the right-hand side gives
hydrodynamic fields would be written in this notation as  the change inp induced by collisions:

where the generalized distribution function
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dD
cqrt)= Uf $a(r) da(N[(da—a) = S(ga— )]V - TV-(v(w-on)=E,
X cosfdggd 6. a7 JE
To lighten the notation, we have usgdo indicate the coor- Gt TV (v 60)=0. 21)

dinatesv, dr, anddv, and the subscript oth to show which

particle it represents: The quantities in angular brackets are the streaming fluxes.
They give the transport of the concerned quantity by the free
g =(v;,dr;,0v), motion of the particles. To get a set of closed equations, we
must make a closure hypothesis, relating the streaming fluxes
dg;=dv; dor;dov;, to the hydrodynamic fields.
We will use the simplest possible closure hypothesis that
¢i(r)=o(q,1,t). (18 s consistent with the existence of the hydrodynamic fields.

C is an integral over all possible collisions. The colliding We assume that all the correlat_|ons between.Lyapunov de-
grees of freedom and the physical ones vanish, except the

particles and their coordinates are labefeandB, as in Fig. correlations described b andE. We also exploit the fact

7. The delta functions select certain collisions. The first delta%hat the phvsical variables are set by thermal equilibrium. so
function selects those collisions where the postcollisional co- phy y . '

ordinates ofA are equal tog. The second delta function wi?rt]nv?/gdr; 3{; independent of position afd) =0. To start
selects collisions where the precollisional coordinate\ of '

areq. These two delta functions generate the gain and loss St =(voSr) = Sr) =0 29

terms of the collision operator. Finally cosé gives the fre- (vy 10 =(vxdry)=(0,)(Ory)=0. 2

quency of collision. As in Fig. 7V:|U/§_.UB| and 6 is the The average can be separated because there is no hydrody-
angle betweemw ,—vg andn. For a collision to be possible, namic variable that describes this correlation. Finally, the
— w/2< @<m/2. The unit vectomn is shown in Fig. 7; it product vanishes becauge)=0. The accuracy of this as-

always points towards particlg. sumption can be estimated by quantities such as
We will not solve the Eq(14) for ¢ but rather use it to

derive equations for the new hydrodynamic fields. lebe ~ (vydry )

any of the quantities in the angular brackets in E®) or ~(u)(ory)’ 23

Eq. (13). Multiply the Boltzmann equatiori1l4) by ¢ and

integrate oven. The result is where (v)=(\lv5+v3)=1. When considering a streaming
() flux, such as(v,ér,), we haves<0.10,[ §~0.07 for Fig.
T+V'<v'/’>+<‘/’5v V sy =(yC). (199  S(d)] but 6 decreases as the wavelength of the perturbation

increases. For quantities such(agdr,) that are not stream-

) L . ing fluxes, s is very small;5§<0.05 and often5<<0.01.
The first term on the left-hand side is the time rate of change On the other hand, correlations such (assr,) do not
] X

OT n times one Of. the hydrodynamic fleld_s. The seco_nd MY anish because they are related to the hydrodynamicield
gives the streaming transport ¢f The third term vanishes
unlessys depends ordr. This term reflects the amplification nD
of ér by év during the free motion. The right-hand side is <vX5rX>=(vyﬁvy>=7. (249)
the collisional change of. This last term can be simplified

to We assume thatv,dr,)=(v,dv,), because otherwise an-

o other quantity(v,ér,—v,év,) would be needed to describe
('//C>=§f [Ya+ dg— a— delda(r) ga(V the correlations betweedr and v. Analogous arguments
lead to(vydvy) =(v,6v,)=nE/2. Equation(24) is the most
X cosfdgadasd 6, (200  doubtful assumption of the closure hypothesis, for the sound

modes typically have
where ;= (q;), and the definitions of Eq.18) have been

used again. Now, the significance of Efj1) becomes clear. (vxdry—vydvy)

When ¢ is any of the conserved quantitigs/C) vanishes. (0x0T 3+ 0,00, ~0.2. (25

Settingys equal to each of the conserved quantities, @)

generates the following equations: Considering higher powers im and using the same logic,
%JFV,(,)&):U, (0,0,8r,)=0, but (v26r,)=nTX, . 26)

The next rule may seem arbitrary,

ou
E+V<U5U>:o, <v§5rx>=ﬂTXX, (27)
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because we could have writtdn24r,)=(v,)(v46r,), and  These fluxes also govern the decay of the usual hydrody-

interpret the second factor & But this would mean assum- namic modes. If a shear is imposed on a fluid, there is a flux

ing thatv, is independent of,or,. Equations26) and(27) of momentum along the velocity g_radient that redl_Jces th_e

are usually obeyed within 5%. magnitude of the shear. In the Navier-Stokes equations, this
It is straightforward to apply this closure hypothesis to thefluX is represented by the viscosity.

streaming fluxes. Putting the streaming fluxes into the hydro- 1he hydrodynamic fluxes have two components: the

dynamic equations, we have “streaming” flux Fgyeam and the “collisional” flux F g .
' The streaming flux gives the transport of the conserved quan-
oxX 1 tity by the free movement of the particles. It has already been
E+§VD=U, included in Egs.(28), (29), and (30). The collisional flux
gives the transport of the conserved quantities during colli-
sions. It is not included in the above equations, because they
U 1 : :
L IVE=0 were derived from a Boltzmann equation. In the Boltzmann
a2 ’ equation, the collisional flux must vanish because the two

colliding particles are assumed to be at the same posftion.
Eq. (17), both particlesA andB are atr.]
at T We can measure the different parts of hydrodynamic
fluxes in a simulation. Just before each collision, we perform
d an orthonormalization on all the vectors, and measure
i FTvV-u=o. (28 (y,6r,), which is the streaming flux oX,. Just after the
collision, we orthonormalize again, and measure the colli-
We can now explain the existence of two shear modes ansional flux of X . If this is carried out long enough, we can
four sound modes at each wavelength. If we assume that tietermine the spatial dependences of the fluxes, and the pic-
hydrodynamic fields vary only iy, two equations decouple ture shown in Fig. 8 emerges. In Figia8 we see that both

from the other four: the streaming and collisional flux tend to reduce the ampli-
tude of the mode. Whe#X, /dy>0, the fluxes are negative,
Xy indicating that negativeX, is being transported towards the
W‘UX' high X, regions, reducing the amplitude of the perturbation.
Therefore, the cause of the exponential growth of the pertur-
U, bation is not to be found there. On the other hand, Fig) 8
prafal® (29 shows that the collisional flux obl, is positive when the
gradient is positive, indicating a “negative viscosity” that
These equations describe the shearing modes. leads to the exponential growth.
The other four equations are But why should the viscosity be negative? For an expla-
nation, see Fig. 9. Imagine there is a region vt 0 lying
dX, 14D just above a region whep¢, <0, as shown in the figure. The
0t 2 W: y? gradient ofX, is positive. A typical particle emerges from
the X,>0 region, and encounters a typical particle from the
Ju, 1 9E X«<<0 region in a head-on collision. Each particlefs and
7+ > W: , dv is as shown in the figure. The collision rule is such that
after the collision, each particledv is amplified. If the col-
lision is head on, each particle returns to its region of
D Xy e o .y ) o ;
— +T—2=E, origin—with its original perturbation amplified. In this way,
at ay the gradient inX, increases.
Examining the conjugate partners of the shearing expo-
EJFT%:O (30) nents confirms this explanation. In accordance with &y.
at ay ' X, and U, have opposite signs. Since tkg,(U,) is gen-

_ _ erated by gradients iX,, it changes sign with respect to
These equations resemble two sets of compressible Eulgy, | and becomes a downgradient flux that reduces the am-

equations, coupled by the terms on the right-hand side. Theylitude of the perturbation. All the other fluxes remain down-
have oscillating solutions with a frequency dT/Z. gradient.

C. Instability of the shearing mode D. Calculation of the collisional fluxes

The Egs.(29) and (30) are an incomplete description of Having demonstrated the existence of a negative viscos-
the hydrodynamic Lyapunov modes for their solutions growity, we would now like to calculate it. To do so, we will use
only linearly in time. The Lyapunov modes grow exponen-the Enskog equation, which is an extension of the Boltzmann
tially with time, the growth rate being the Lyapunov expo- equation to high densities. The Enskog equation has the
nent. In this section, we show that the growth rate of thesame form as the Boltzmann equation, except the collision
shear modes can be explained by the hydrodynamic fluxesperator is modified to
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FIG. 8. X, [panel(a)] and U, [panel(b)] and their streaming collision:

fluxes,Fgyeam @nd collisional fluxesk: ., for the Lyapunov mode
i=237, shown in Fig. &l). The parameters afd=120, L,=15,

and L,=45. The simulational domain was divided into 20 bins,
each bin being-, wide andL,/20 high. Before each collision, we
measurechU, , nX,, and the streaming fluxes. After the collision, X U <0
the collisional fluxes were measured. This figure represents an av- Xy X

erage over 6000 collisions. All data are given in the dimensionless FIG. 9. The collisions that generate the anomalous viscosity

units discussed in Sec. I C. The solid arrows represent the Lyapunov coordinatesnd dv,

and the white arrow represents the velocities. The collision takes
place in a region where the gradient X§ is positive. The upper
particle emerges from a region whexg>0 and U,>0; it has
éry,>0 and dv,>0. It suffers a head-on collision with a particle
X cosfdgadggd 6. (31) emerging from the region witiX,, U,<<0. The collision is such

__ that év, of each particle is augmented, and the particles return to
Two changes have been made to the Boltzmann collisiogheir point of origin, thus amplifying the gradient.

integral in Eq.(17) to yield this expression. First of all, a
factor y>1 has been added to account for the increase in

CE:XUJ da(r) pa(rg)[ 8(aa—a) — S(Aa— IV

ba(re) = ¢a(r)+an-Vg(nN+304(n-V)2pg(r)+- - -.

collision frequency due to excluded volume. We [i$8] (33)
1—(7v/16) - This enables us to spl{/C) into three parts,
X=— 5
(1=v) (#Ce)=(YCo+ (YC)1+(YC)2, (34)

wherev is the density expressed as the fraction of the areavhere

covered by the disks. The second change is to take into ac-

count the fact that when two particles collide, they are at _ f r -
different positions. Thusgg(r) in Eq. (17) has been re- (WCho=x0 | (Y~ 1ha) badpwasdaadgdn,
placed bygg(rg). These subtle changes introduce the possi-

bility of calculating the collisional fluxes. B , ~ -
Next, we can expandg(rg) in a Taylor series: <¢C>17XUJ (Ua=¥n) palon- V dglwapddaddsdn,
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) 5 but F(U) #0. We will now evaluate this flux.
<¢C>2=XUJ (Ip—n) Pal(o°12) Considering only the change ifv provoked by the sec-
A A ond term off, in Eqg. (10), we have
X(n-V)?¢pglwagdgadggdn, (35 ) .
A— a=secllvg—uvalo” (Srg—dra)-uu’. (43
where all the distribution functions are evaluated .aiote VA~ ¥ lve=val (ore » *
that (4C)o is simply the Boltzmann collision operator, mul-  |nserting Eq.(43) into Eq. (36) gives
tiplied by ¢ and integrated oveq. As above, it vanishes
when ¢ is one of the conserved quantities in Ef1). Fur- ~ .
thermore, for thesg, the remaining two expressions can be Feol(W)=—x(0/2)V- f n(Srg—ora)-uu’
written as a divergence of a flux:

X pacpgV2dgadggdn

<¢C>1:X(0'2/2)V'f ﬁ(‘ﬂfo\_ wA)(ZSAQSBwAquAqudﬁa A .
_X(O-Z/4)Vf n(5l’3—5rA)-uu’

(€)= x(0*14)V - f N(Ya— YN[ $aV dp— 5V hal X[ baV b — bV da]- AV2daadagdh, (44)

X wppddadogdn. (36 Following Ref.[9], the first step is to take the integral over
considering the velocities as fixed. In two dimensions, this
amounts to integrating ovet. Taking the limits of integra-
(YC)=—V -Feou(). (37) tion as— 7/2< 6= m/2 ensures that we consider only veloci-

ties such thatg,—wvg)-n=0. We must express in terms
Feon is the collisional flux of the quantitys, and can be of § ando, wherep is a unit vector pointing in the direction
extracted from Eq(36). of vpo—vg. From Fig. 7, we se@=p cosf—usind andu’

The collisional fluxes, Eq.(36), are linear in the — "% B—Cisin 2 hi bstituti q
Lyapunov coordinates, and thus can be calculated using the ¥ €0S #—usin20. We carry out this substitution, an

closure hypothesis. The calculations are very long, so w&€t @ Series of terms proportional to Besin™6. Only terms
will show only one calculation in detalil. containing an even power of sthsurvive the integration

As noted above. the collision rule fair has the same ©°Ver 6. This is sufficient to show that the first term vanishes.

form as the collision rule for velocities. Therefore, one ob-Eduation(44) becomes
tains fluxes with a familiar form

Thus we can write

" Xa'zrr An An ~ An An ~
n¢ FcoII(U):T {(vv+uu)(S-u)+(uv—vu)(S-v)}
V-Fea(X)= 5 VD - nu[V2X+V(V-X)], (39
X(8rg— 8rp) - UV2doadog . (45)
where{ and the “viscosity” u are
We have writtenS= ¢,V ¢pg— ¢V ¢4 to lighten the nota-

T ) Jr 312 tion. Now, we do the integration over the Lyapunov coordi-
{= X0 p=gaxo L B9 nates, using the closure hypothesis given in Sec. Il B. Since
the Lyapunov coordinates appear with an even function of
For Fei(D), we have the velocities, we average tf#’s to X. (Recall thati ando
are determined by the velocities he result is
V-Feoi(D)=n{V-X—nkV?D, (40)
- . xolm - -
where the “thermal conductivityx is Fean(U)= Tf f {L(v-V)+JI(u-V)}
17\ ~
K= 4\é—xn02T1/2. (41) X (U-X)fafgV2dv advg . (46)

As stated above, the collision rule féw has two parts. Note thatvw +uu=1anduv —vu=J, where
One part has the same form as the collision rulesforThese
pieces will give fluxes with the same form as in E§8) and 3 0 - 1)

Eq. (40), except thaX is replaced byJ andD is replaced by 1 0
E. The second part of,, however, gives new results. De-
note the fluxes due to this part B/, . Evaluation of these is a matrix that rotates a vector by 90°. Now, we change

integrals gives variables tov , = (va+vg)/V2 andv_=(va—vg)/V2, and
. do the integral over the velocities. The unit vectors are just
Feal(E)=0, (42)  functions of the angle of_. The result is
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IXy Xy 20 - - -
Feon(U)=—n¢ 1V -X+J x oy (47) o
where¢ is a new tranport coefficient
T 2
&= X nT. (48)
As we show below, Eq(47) gives a term that accounts for
the growth of the shear modes.
o L L L
E. A quantitative estimate of the shearing exponents 0.0 0.2 0.4 0.6 0.8
Putting the computed collisional fluxes into E9), the v
governing equations of the shear mode become FIG. 10. A comparison of computed and obsengd The
circles are the observed values @f from Fig. 6 for the shearing
IXy 3*Xy mode, and the solid line is E¢52).

—=Us+u 51
o % observed values. Close agreement between the theory and
) ) the simulation is not expected because the theory neglects
IU _ Uy 97X (49) the streaming fluxes. In particular, the collisional flux must
g M ,9y2 ay2 ' vanish aty=0, so theoretical curve in Fig. 10 must pass
through the origin. The smallness of the streaming flux in
Since Eq.(49) is linear, we can get a dispersion relation by Fig. 8 (v=0.56) suggests that a calculation of the streaming
inserting fluxes is not enough to account for the difference between
R _ A . theory and simulation. Nevertheless, Fig. 10 shows that the
Xy =XeMtiky -y =0erttiky, (500 kinetic theory is a good first step in the quantatative expla-
nation of the shear modes.

Putting this solution into Eq(49) and eliminatingX and U

gives F. The sound modes
A=+ Ek— uk2. 51 Adding the collisional fluxes, the sound mode equations
Vek—u 6 become
The first term above corresponds exactly to what is observed. )
Taking the positive sign, we have the growing mode, and 07_)(yJr E(1+§)£=U +,u& Xy
taking the negative sign, we have its conjugate partner. Fur- a2 ay Y ay? '

thermore, the growth rate is linear ln The second term,
however, is not what is observed. In the Lyapunov spectra, u. 1 p
the sum of each exponent and its conjugate partner is exactly Ty + §(1+ 0) VoM
0. But according to Eq51), this is not so. The sum of each y
mode and its conjugate partneri2uk?<0. Therefore, it is
tempting to dismiss the second term, because it is not time dD 2 #’D
reversible. But if we setu=0 in Eq. (49), it seems we EJFT(:HDW_E“LKa_yz'
should also sef=0. We do not currently have any satisfac-
tory reason for keeping but eliminatingu. JE U PE
Another objection to Eq(51) is that it predicts that short —+T(1+0) e S (53)
wavelength instabilities grow most rapidly, and therefore the at ay ay?
long wavelength patterns observed in Fig. 5 are unstable, and
would not be observed. This is partly correct—the patterns in Unfortunately, these equations do not produce unstable
Fig. 5 are unstable, but they are observed because the pefitodes, so the growth of the sound waves is not explained by
odic orthonormalization removes the components at higheihe kinetic theory. This can also be verified in simulations,
wave numbers. It is an implicit assumption of the theory thatut it is more difficult to do, because the sound modes are
this is the only effect of the orthonormalization. continually moving, so one cannot take a long time average
We now make a quantitative comparison between th&f the fluxes to see their relation to the fields. This difficulty

theory and the simulation. Comparing E§1) with Eq.(8), ~ ¢an be overcome by calculating the correlation function be-
we see tween each field and its fluxes. However, there is another

problem, because the fluxes are dominated by the movement
CXZZW\/E_ (52 of the sound wave, and not by its growth or decay. But if we
add the correlation functions of all four sound modes to-
In Fig. 10, we present a comparison of the theory with thegether, the fluxes responsible for this translation will then

2 2
PUy X,

ay? ay?’
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FIG. 12. A comparison of the theoretical and observed sound
speeds. The upper and lower theoretical curves are the predicted
sound speeds. The middle curvecis, the predicted sound speed
4 . . . ‘ : ; . . with ¢=0.
— E-E
ol B, | equal to either of the two values predicted by Esf), but it
is very close tcc, . (Note thatc, contains both the stream-
5 Nemee ing and the collisional fluxes, unlike our estimate for the
*g ol T\ e A growth rate of the shear mode in Fig. 10he agreement
5 P el betweerc, and the observed values is too good to simply be
© a coincidence. Therefore, we believe that the left-hand sides
27 1 of Eqg. (53) correctly describes the sound modes, but the dif-
b) fusive terms on the right-hand sides do not seem to be cor-
e rect. This is especially true for the term proportionalé&o
40 5 10 15 20 25 30 35 40 45 which modifies the predicted sound speed in a way that is not
y observed. But there seems to be no reason why we should set

) ) £=0 here, and not in Eq51). Note that the periodic or-
FIG. 11. The spatial correlations betwee [panel(a)] andE  thogonalization constrains the sound waves to have the same
[panel(b)] and their fluxes. The solid lines are thg, or E space frequency, because they must always remain orthogonal to
autocorrelation functions. The dotted lines are the spatial correla(-)ne another. This fact has not been taken into account in Eq.
tion functions of the fields with their fluxes. To obtain this figure, (54). Finally, we note that the most doubtful closure assump-
200 different profiles o, E, and their fluxes were constructed tion, Eq.(24,), concerns only the sound modes.

for each of the four sound modes. The spatial correlation function -

! ! . The observed sound speed is very close to half of the
was calculated for each profile, and all the profiles for a Smgleobserved sound speg2l]. This is because the pressure of the
mode were averaged together to give that mode’s correlation func—h hard disk f 'dp b it P
tions. Then the corresponding functions of the four modes weré € hard disk Tiuid can be written
added together to give these curves. The system used to construct

this figure is the one shown in Figs. 3 and 5. p=(1+{)nT. (59

cancel out, because two sound modes propagate in the podiherefore, the left-hand sides of E&3) are closely related
tive y direction and the other two in the negative direction. to the compressible Euler equations, wKp andU, in the
The results forU, and E are shown in Fig. 11. We see role of the velocity, and wittD and E as the temperature.
that in both cases, the flux has the opposite sign of the grg=ertain numerical factors, such as the 1/2 in the equations for
dient. Therefore all fluxes are dissipative, tending to reduceXy andU,, reduce the frequency by a factor of 2.
the amplitude of the perturbation. The kinetic theory ap- This observation raises the question of the relation be-
proach does not explain the growth of the sound modes. tween the transport coefficients and the Lyapunov exponents.
Equation(53) predicts soundlike waves at two different Is it possible to extract the transport coefficients from certain
frequencies, hydrodynamic Lyapunov exponents? This paper suggests
; " that it _is ngt p_ossigle. \P/]Ve were ablg_e;o (eSslt)imatg '::h_e eﬁ))onent
. R associated with the shearing mofigq. and Fig. 1Q.
o=l Ci 2 = Zci £+&%4) k+O(K?), (54) The origin of this exponent’s growth is the upgradient trans-
fer of dv due to the second term of E.0), the Sv collision
wherec, = \T/2(1+ ¢), which would be the sound speed if rule. This term has no analog in velocity collision rule, Eq.
we set the right-hand sides of E¢3) to 0. In Fig. 12, we (1). The viscosity of the hard disk fluid has entirely different
compare the observed values ofk (the phase velocity of origin. It is due to the downgradient transfer of momentum
the wave$ to Eq. (54). The observed sound speed is notduring collisions, and the correlations betwagnandv,, .

051103-13



SEAN McNAMARA AND MICHEL MARESCHAL PHYSICAL REVIEW E 64 051103

IV. CONCLUSION the link between the conserved quantities and the hydrody-
namic Lyapunov modes is correct, but it must be elaborated

V\/.e” hLave presente dd a? etxpLanauSg gorptgsecr:hg:éogi):in a way different than the kinetic theory approach presented
namic Lyapunov moces 1irst observ y here. An improved theory may have to explicitly treat the

schl[2]. We consider the components of the Lyapunov vec-

) ! k I . orthonormalization of the displacement vectdls; . In our
tor assoz_:lated with each particle to be quantities carried b}{heory we do not consider the orthonormalization, assuming
that particle. We then look at how these quantities chang ! ;

during a collision, and we find that certain combinations of‘tnhat its only effect is to suppress short wavelength perturba-
theseg uantities a{re conserved. The hydrodynamic Lya unc;[\i/ons. Another possible improvement would be to relax the
q : y y yap iISotropy assumption of Eq24).

modes arise from thgse new cqnservaﬂon laws in the' SaME This work also suggests that a simple relation between the
way the hydrodynamic modes arise f_r om the conservation OJ]; drodynamic Lyapunov exponents and the transport coeffi-
mass, momentum, and energy. This is the central idea of this

S . . Clents does not exist. The hydrodynamic exponents arise
paper. We attempted 1o apply this idea in more detail b34‘r0m a term in the velocity space displacement collision rule,

def|n|_ng a generalized Boltzmann equation. We a_re abIe_t%q_ (10), which has no analog in the velocity collision rule,
explain a number of properties of the exponents: the exis:

" " “ Y Eq. ().
tence of two “shear” modes and four “sound” modes for
each wave number, and an estimate of the Lyapunov expo-
nent associated with the shearing mode. On the other hand,
the statistical approach of the Boltzmann equation introduces We thank Christoph Dellago, Rodrigo Soto, Pierre Gas-
certain terms that are not observed. Neither is our theory ablpard, Stefano Ruffo, and Bill Hoover for several helpful dis-
to explain the growth of the sound modéslthough the cussions. We also thank Harald Posch for providing us with
phase speed of the waves is correctly predict&tiis com-  Ref.[2] before its publication. We thank the Center National
bination of success and failure leads us to the conclusion thate la Recherche Scientifique for funding a part of this work.
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